Theoretical Computer Science - Bridging Course Summer Term 2017 Exercise Sheet 10

Hand in (electronically or hard copy) by 12:15 pm, July 24, 2017

Exercise 1: Completeness and Correctness of Calculi (2+1+1 points)

A calculus **C** is called *correct* if for every knowledge base KB and formula φ the following holds

$$KB \vdash_{\mathbf{C}} \varphi \implies KB \models \varphi.$$

Calculus \mathbf{C} is called *complete* if

$$KB\models\varphi\quad\Longrightarrow\quad KB\vdash_{\mathbf{C}}\varphi.$$

Remark: For the definition of ' \models ' consult Exercise Sheet 9 or the lecture.

Consider the following calculi

$$\mathbf{C_1}: \quad \frac{\varphi \leftrightarrow \psi}{\varphi \to \psi, \psi \to \varphi} \qquad \mathbf{C_2}: \quad \frac{\varphi, \varphi \to \psi}{\psi} \qquad \mathbf{C_3}: \quad \frac{\varphi, \psi \to \varphi}{\psi}$$

- (a) Show that the C_1 and C_2 are both correct. *Hint: Use truth tables.* Give a short explanation why C_1, C_2 are correct.
- (b) Show that C_3 is not correct.
- (c) Show that $\mathbf{C_1}, \mathbf{C_2}, \mathbf{C_3}$ are not complete by giving a knowledge base KB and a formula φ such that $KB \models \varphi$ but not $KB \vdash_{\mathbf{C_i}} \varphi$.

Exercise 2: Resolution

Due to the *Contradiction Theorem* (cf. lecture) for every knowledge base KB and formula φ it holds

$$KB \models \varphi \iff KB \cup \{\neg\varphi\} \models \bot.$$

Remark: \perp is a formula that is unsatisfiable.

Thus, in order to show that KB entails φ , we show that $KB \cup \{\neg\varphi\}$ entails a contradiction. A calculus **C** is called *refutation-complete* if for every knowledge base KB

$$KB \models \bot \implies KB \vdash_{\mathbf{C}} \bot.$$

Therefore, if we have a refutation-complete calculus **C**, it suffices to show $KB \cup \{\neg\varphi\} \vdash_{\mathbf{C}} \bot$ in order to prove $KB \models \varphi$.

(1+2+3 points)

Hint: Use a truth table

The Resolution Calculus¹ **R** is correct and refutation-complete for knowledge bases that are given in Conjunctive Normal Form (CNF). A knowledge base KB is in CNF if it is of the form $KB = \{C_1, \ldots, C_n\}$ where its clauses $C_i = \{L_{i,1}, \ldots, L_{i,m_i}\}$ each consist of m_i literals $L_{i,j}$ Remark: KB represents the formula $C_1 \wedge \ldots \wedge C_n$ with $C_i = L_{i,1} \vee \ldots \vee L_{i,m_i}$.

The Resolution Calculus has only one inference rule, the *resolution rule*:

$$\mathbf{R}: \quad \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

Remark: L is a literal and $C_1 \cup \{L\}, C_2 \cup \{\neg L\}$ are clauses in KB (C_1, C_2 may be empty). To show $KB \vdash_{\mathbf{R}} \bot$, you need to apply the resolution rule, until you obtain two conflicting one-literal clauses L and $\neg L$. These entail the empty clause (defined as \Box), i.e. a contradiction ($\{L, \neg L\} \vdash_{\mathbf{R}} \bot$).

- (a) We want to show $\{p \land q, p \to r, (q \land r) \to u\} \models u$. First convert this problem instance into a form that can be solved via resolution as described above. Document your steps.
- (b) Now, use resolution to show $\{p \land q, p \to r, (q \land r) \to u\} \models u$.
- (c) Consider the sentence "Heads, I win". "Tails, you lose". Design a propositional KB that represents these sentences (create the propositions and rules required). Then use propositional resolution to prove that **I always win**.

Exercise 3: Predicate Logic: Construct Formulae (1+1+1+1) points)

Let $S = \langle \{x, y, z\}, \emptyset, \emptyset, \{R\} \rangle$ be a signature. Translate the following sentences of first order formula over S into idiomatic English. Use R(x, y) as statement "x is a part of y".

- (a) $\exists x \forall y R(x, y)$.
- (b) $\exists y \forall x R(x, y)$.
- (c) $\forall x \forall y \exists z (R(x, z) \land R(y, z))$
- (d) $\forall x \exists y (R(y, x) \land \neg \exists z (R(z, y) \land \neg R(y, z)))$

Exercise 4: Predicate Logic: Entailment (2+2+2 points)

Let φ, ψ be first order formulae over signature \mathcal{S} . Similar to propositional logic, in predicate logic we write $\varphi \models \psi$ if every model of φ is also a model for ψ . We write $\varphi \equiv \psi$ if both $\varphi \models \psi$ and $\psi \models \varphi$. A *knowledge base KB* is a set of formulae. A model of *KB* is model for all formulae in *KB*. We write $KB \models \varphi$ if all models of *KB* are models of φ . Show or disprove the following entailments.

- (a) $(\exists x R(x)) \land (\exists x P(x)) \land (\exists x T(x)) \models \exists x (R(x) \land P(x) \land T(x)).$
- (b) $(\forall x \forall y f(x, y) \doteq f(y, x)) \land (\forall x f(x, \mathbf{c}) \doteq x) \models \forall x f(\mathbf{c}, x) \doteq x.$
- $\begin{array}{l} (\mathrm{c}) \ (\forall x \, R(x,x)) \land (\forall x \forall y \, R(x,y) \land R(y,x) \rightarrow x \doteq y) \land (\forall x \forall y \forall z \, R(x,y) \land R(y,z) \rightarrow R(x,z)) \\ \models \forall x \forall y \, R(x,y) \lor R(y,x). \end{array}$

Hint: Consider order relations. E.g., $a \leq b$ (a less-equal b) and a|b (a divides b).

¹Complete calculi are unpractical, since they have too many inference rules. More inference rules make automated proving with a computer significantly more complex. The Resolution Calculus is an appropriate technique to avoid this additional complexity, since it has only one inference rule.