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Exercise 1: Proof by Induction (5 points)

Prove the famous Gaussian summation formula by induction on n:

For all natural numbers n ≥ 1 it holds:
n∑

k=1

k = n(n+1)
2

Solution:

For n = 1 we have to show that
1∑

k=1

k = 1(1+1)
2 , which is obviously true because both sides are equal 1.

Now assume the statement is true for n. It follows that

n+1∑
k=1

k =
n∑

k=1

k + (n + 1) =
n(n + 1)

2
+ (n + 1) =

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
,

which shows that the statement also holds for n+ 1. The second equality in the equation above comes
from the assumption for n.

Exercise 2: Partition of a Set (5 points)

A partition of a set A is a collection of sets Bi, i ∈ {1, . . . , n} such that

B1 ∪ . . . ∪Bn = A and Bi ∩Bj = ∅ for i 6= j.

Show that Bi := {3k + i | k ∈ Z}, i ∈ {1, 2, 3} is a partition of Z.

Hint: Z is the set of integers. In order to proof that two sets are equal consider an arbitrary element
from one set and show that it is contained in the other set and vice versa.

Solution:

First we show B1 ∪B2 ∪B3 = Z. Let z be an arbitrary element in B1 ∪B2 ∪B3. This means z ∈ Bi

for at least one of the Bi. Since Bi is composed only of integers we conclude z ∈ Z.
Now let z ∈ Z be an arbitrary integer and i := z mod 3 ≤ 2 the residue of the integer division of z by
three. Then we have z = 3k + i for some k ∈ Z and thus either z ∈ Bi for i = 1, 2 or z ∈ B3 for i = 0.
Therefore z ∈ B1 ∪B2 ∪B3.
It remains to be shown that the intersection Bi ∩ Bj for i 6= j is empty. For a contradiction assume
there exists a z ∈ Bi ∩ Bj . Since z ∈ Bi and z ∈ Bj we have (by definition of B1, B2, B3) that
i = z mod 3 = j which is a contradiction.
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Exercise 3: Counting Edges in Acyclic Graph (5 points)

A tree is an acyclic, connected, simple graph. Show that a tree with n ≥ 1 nodes has n− 1 edges. A
forest is a graph consisting of several unconnected trees. Show that a forest consisting of k components
has n− k edges.

Hint: A simple graph is an unweighted, undirected graph containing no self-loops or multiple edges.

Solution:

First we show that an acyclic, connected graph with n nodes has exactly n−1 edges using an induction
argument on n. A graph with just one node has n − 1 = 0 edges. Assume that the statement holds
for graphs with an arbitrary but fixed number of nodes n and consider a graph G with n + 1 nodes.
We remove one edge e, which makes G disintegrate into two components G1 and G2 which are not
connected to each other (if there were a connection between G1 and G2, then reattaching e to G would
close a cycle).
The components G1 and G2 themselves are still acyclic and (internally) connected and have 1 ≤
k,m ≤ n nodes with k + m = n + 1. Using the induction hypothesis (k,m ≤ n) we have that G1 has
k − 1 edges and G2 has m− 1 edges. Since we removed exactly one edge to obtain G1 and G2, G has
(k − 1) + (m− 1) + 1 = n edges.
Next we show that a forest G consisting of k trees G1, . . . , Gk has n− k edges. Let ni, i ∈ {1, . . . , k}
the number of nodes of the i-th tree. Of course

∑k
i=1 ni = n. We already know that Gi has ni − 1

edges. Thus G has exactly
∑k

i=1 ni − 1 = n− k edges.

Exercise 4: Nodes with Identical Degrees (5 points)

Show that every simple graph with two or more nodes contains two nodes with the same degree.

Solution:

We prove this claim by contradiction. Consider a graph with n ≥ 2 nodes u1, u2, . . . , un. Assume that
each node has a different degree. The minimum degree a node can have is 0, in which case the node
has no neighbours; and the maximum degree a node can have is n−1, in which case the node connects
to every other node in the graph. Without loss of generality, we assume that node ui has degree i− 1,
where 1 ≤ i ≤ n (otherwise we rename nodes). Since node un has degree n− 1 it must be connected
to all others including u1. However, the degree of u1 is 0, which is a contradiction.

Alternative approach. You can also prove this by induction on n. However, in this process, you
still may have to use the trick we employed in the above proof: counting degrees carefully.

Nice remark An application of the pigeonhole principle: If the question were to show that every
simple ”connected” graph with two or more nodes contains two nodes with the same degree. Then we
can argue by contradiction and assume that each node has a different degree from which the minimum
degree is 1 (since in connected graphs every node must of be of degree at least 1) and maximum is
n − 1. But since we have n nodes and each node can have degree i, s.t. 1 ≤ i ≤ n − 1 ( i.e. n − 1
possibilities ), it must be that by the pigeonhole principle that there exist at least two nodes with the
same degree.
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