
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, P. Bamberger, H. Ghodselahi, Y. Maus, P. Schneider

Theoretical Computer Science - Bridging Course

Summer Term 2017

Exercise Sheet 4

Hand in (electronically or hard copy) by 12:15 pm, June 12th, 2017

Exercise 1: Context-Free Languages (2+2+1 points)

Give context-free grammars that generate the following languages. The alphabet set is Σ = {0, 1}.

a) {w | w contains at least three ones}

b) {w | w the length of w is odd and its middle symbol is a 0}

c) The empty language.

Note: The empty language is not the language containing only the empty string!

Solution

a) S → R1R1R1R
R→ 0R | 1R | ε

b) S → 0 | 0S0 | 0S1 | 1S0 | 1S1

c) S → S

Exercise 2: Chomsky Normal Form (2+5 points)

Consider the following context-free grammar (CFG):

S → aSb | D
D → ccDcc | ε

a) Which language does this grammar define?

b) Convert this CFG into an equivalent one in Chomsky Normal Form. Give the grammar you
obtained after each step of the conversion algorithm.

1

Solution

a) The language consists of all strings of the form xyz with the following properties:

• x ∈ {a}∗

• z ∈ {b}∗

• y ∈ {c}∗

• |x| = |z|
• |y| = 4 · n for an n ∈ N

b) Add a new start variable S0 and the rule S0 → S.

S0 → S

S → aSb | D
D → ccDcc | ε

Remove all ε-rules: Delete the rule D → ε and add the rules S → ε and D → cccc.

S0 → S

S → aSb | D | ε
D → ccDcc | cccc

Remove S → ε and add S → ab and S0 → ε (the ε-rule for the start variable is allowed).

S0 → S | ε
S → aSb | ab | D
D → ccDcc | cccc

Next remove unit rules.

Remove S0 → S and add S0 → aSb | ab | D.

S0 → ε | aSb | ab | D
S → aSb | ab | D
D → ccDcc | cccc

Remove S0 → D and add S0 → ccDcc | cccc.

S0 → ε | aSb | ab | ccDcc | cccc
S → aSb | ab | D
D → ccDcc | cccc

Remove S → D and add S → ccDcc | cccc.

S0 → ε | aSb | ab | ccDcc | cccc
S → aSb | ab | ccDcc | cccc
D → ccDcc | cccc

2

Convert the rules into the proper form.

Add S1 → Sb and adjust the rules accordingly.

S0 → ε | aS1 | ab | ccDcc | cccc
S → aS1 | ab | ccDcc | cccc
S1 → Sb

D → ccDcc | cccc

Add U1 → a and Add U2 → b and adjust.

S0 → ε | U1S1 | U1U2 | ccDcc | cccc
S → U1S1 | U1U2 | ccDcc | cccc
S1 → SU2

U1 → a

U2 → b

D → ccDcc | cccc

Add S2 → cS3, S3 → DS4 and S4 → cc and adjust.

S0 → ε | U1S1 | U1U2 | cS2 | cccc
S → U1S1 | U1U2 | cS2 | cccc
S1 → SU2

S2 → cS3

S3 → DS4

S4 → cc

U1 → a

U2 → b

D → cS2 | cccc

Add S5 → cS6 and S6 → cc and adjust.

S0 → ε | U1S1 | U1U2 | cS2 | cS5

S → U1S1 | U1U2 | U3S2 | cS5

S1 → SU2

S2 → cS3

S3 → DS4

S4 → cc

S5 → cS6

S6 → cc

U1 → a

U2 → b

D → cS2 | cS5

3

Finally, add U3 → c and adjust.

S0 → ε | U1S1 | U1U2 | U3S2 | U3S5

S → U1S1 | U1U2 | cS2 | U3S5

S1 → SU2

S2 → U3S3

S3 → DS4

S4 → U3U3

S5 → U3S6

S6 → U3U3

U1 → a

U2 → b

U3 → c

D → U3S2 | U3S5

Exercise 3: Pushdown Automata (6 points)

Convert the following CFG to an equivalent pushdown automaton. The alphabet is Σ = {a,+,×, (,)}
and the set of variables V = {E, T, F}.

E → E + T | T
T → T × F | F
F → (E) | a

(You already saw this grammar in the lecture with < expression >,< term > and < factor > instead
of E, T and F).

Solution

The Automaton is given by the following diagram.

qstart

qloop

qaccept

ε, ε→ E$

ε,$→ ε

ε, E → E + T ; ε, E → T ; ε, T → T × F ; ε, T → F ; ε, F → (E); ε, F → a;
a, a→ ε; (, (→ ε;),)→ ε; +,+→ ε; ×,× → ε

Remark: The general transformation procedure is given in on Slide 59 of the third set of lecture slides
which tackles context free languages. There it is proven (constructively) that any context free grammar
can be transformed into a PDA.

Note that transitions like ε, F → (E) are shortcuts. In fact, one has to introduce additional states
and define the transition as

4

qloop
ε, F →) ε, ε→ E

ε, ε→ (

Exercise 4: Context-Free Languages and Set Operations (3+3 points)

(a) Show that context-free languages are not closed under taking intersections (i.e., the intersection
of two context-free languages is not necessarily context free).
Hint: You can use that the language {aibici|i ≥ 0} is not context-free.

(b) Show that context-free languages are not closed under taking complements.
Hint: You can use DeMorgan’s law and the fact that the set of context-free languages is closed
under performing union operations.

Solution

(a) Assume context-free languages are closed under intersection operation. We prove the claim by
contradiction. Consider the following languages: L1 = {aibicj |i, j ≥ 0}, L2 = {aibjcj |i, j ≥ 0},
and L3 = L1 ∩ L2 = {aibici|i ≥ 0}. It is easy to prove that L1 and L2 are both context-free
languages (as you can easily derive the corresponding context-free grammar). According to our
assumption, we know L3 will be context-free language as well. However, we know by the pumping
lemma that L3 is not context-free. Hence, we have a contradiction, which implies the assumption
is wrong. Therefore, we have proved the claim.

(b) Assume context-free languages are closed under taking complement operation. We prove the claim
by contradiction. Let L1 and L2 both be context-free languages. According to the assumption,
we know L1 and L2 must both be context-free languages as well. Since context-free languages
are closed under union operation. We know L1 ∪ L2 is context-free too. Now, according to the
DeMorgan’s law, we know L1 ∪ L2 = L1 ∩ L2. As a result, we can further conclude L1 ∩ L2

is context-free. Since L1 and L2 are arbitrary context-free languages, this implies context-free
languages are closed under intersection operation. However, from previous exercise, we know this
is not true. Therefore, we have a contradiction, and have hence proved the original claim.

Exercise 5: Pumping Lemma for Context-Free Languages (3+3 points)

Use the pumping lemma to show that the following languages over the alphabet Σ = {a, b} are not
context free:

(a) {ww | w ∈ {a, b}∗}
Hint: Show that the string s = apbpapbp with p the pumping length cannot be pumped.

(b) {anba2nba3n | n ≥ 0}
(Be careful to read the strings correctly: For example ab4 is equal to abbbb and not to abababab.)

Solution

(a) Assume the language was context free. Let p be the pumping length. We show that the string
s = apbpapbp cannot be pumped, leading to a contradiction. Let s = uvxyz with |vxy| ≤ p and
|vy| > 0.

First, we show that the substring vxy straddles the midpoint of s. If not, then vxy is either fully
contained in the first or fully contained in the second half of s. If it is contained in the first half,

5

we obtain that uv2xy2z = tbpapbp. Because of |vy| > 0 it follows that |t| > p and because of
|uvxy| ≤ 2p it follows that |t| < 3p. So uv2xy2z has a b in the first position of its second half,
making it impossible to have the form ww. Similarly, if vxy is contained in the second half of s,
then the string uv2xy2z has an a in the last position of its first half, making it again impossible
to have the form ww.

But if vxy straddles the midpoint of s, then because of |vxy| ≤ p, pumping s down to uxz leads
to the string apbiajbp. As |vy| > 0, either i or j (or both) are strictly less than p. So this string
has not the form ww.

(b) Assume the language was context free with p the pumping length. Define s := apba2pba3p and let
s = uvxyz be a decomposition of s with |vxy| ≤ p and |vy| > 0. We show that uv2xy2z cannot be
in the language, giving a contradiction. If v or y contained b, the string uv2xy2z would have more
than two b’s and is therefore not in the language. So assume that neither v nor y contains b. That
means that v as well as y is fully contained in one of the three segments ap, a2p and a3p. But then
pumping s up to uv2xy2z would violate the 1 : 2 : 3 length ratio of the segments, because the
length of at least one segment is changed (as |vy| > 0) and at least one segment keeps its length.

6

