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Exercise 1: O-Notation Formal Proofs (2+2+2 points)

The set O(f) contains all functions that are asymptotically not growing faster than the function f
(when additive or multiplicative constants are neglected). That is:

g ∈ O(f)⇐⇒ ∃c ≥ 0,∃M ∈ N, ∀n ≥M : g(n) ≤ c · f(n)

For the following pairs of functions, check whether f ∈ O(g) or g ∈ O(f) or both. Proof your claims
(you do not have to prove a negative result /∈, though).

(a) f(n) = 100n, g(n) = 0.1 · n2

(b) f(n) =
3
√
n2, g(n) =

√
n

(c) f(n) = log2(2
n · n3), g(n) = 3n Hint: You may use that log2 n ≤ n for all n ∈ N.

Sample Solution

(a) It is 100n ∈ O(0.1n2). To show that we require constants c,M such that 100n ≤ c · 0.1n2 for all
n ≥M . Obviously this is the case for c = 1000 and M = 1.

(b) We have g(n) ∈ O(f(n)). Let c := 1 and M := 1. Then we have

g(n) ≤ c · f(n) (1)

⇔
√
n ≤ n2/3 (2)

⇔ 1 ≤ n1/6 (3)

⇔ 1 ≤ n (4)

The last inequality is satisfied because n ≥M = 1.

(c) f(n) ∈ O(g(n)) holds. We give c > 0 and M ∈ N such that for all n ≥ M : log2(2
n · n3) ≤ c · n.

As cn ∈ O(g(n)) holds for every constant c > 0 the result will follow with the transitivity of the
O-notation.

log2(2
n · n3)

= log2(2
n) + log2(n

3)

= n+ 3 · log2(n)

≤ n+ 3n = 4n.

Thus log2(2
n · n3) ≤ c · n for n ≥M := 1 and c := 4.

We also have that g(n) ∈ O(f(n)) holds because

g(n) = 3n ≤ 3(n+ 3 · log2(n)) = 3(log2(2
n · n3)) = 3 · f(n).

Thus with c = 3 and for n ≥M := 1 we have g(n) ≤ cf(n).
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Exercise 2: Sort Functions by Asymptotic Growth (4 points)

Sort the following functions by asymptotic growth. Write g <O f if g ∈ O(f). Write g =O f if
f ∈ O(g) and g ∈ O(f).

n2
√
n 2n log(n2)

3n n100 log(
√
n) (log n)2

log n 10100n n! n log n
n · 2n nn

√
log n n

Sample Solution
√

log n <O log(
√
n) =O log n =O log(n2)

<O (log n)2 <O
√
n <O n =O 10100n

<O n log n <O n2 <O n100 <O 2n

<O n · 2n <O 3n <O n! <O nn
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Exercise 3: The class P (1+2+1+2 points)

P is the set of languages which can be decided by an algorithm whose runtime can be bounded by
p(n), where p is a polynomial and n the size of the respective input (problem instance). Show that
the following languages (∼= problems) are in the class P. Since it is typically easy (i.e. feasible in
polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider
well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) Palindrome:= {w ∈ {0, 1}∗ | w is a Palindrome}

(b) List:={〈A, c〉 | A is a finite list of numbers which contains two numbers x,y such that x+ y = c}.

(c) 3-Clique := {〈G〉 | G has a clique of size at least 3}

(d) 17-DominatingSet := {〈G〉 | G has a dominating set of size at most 17}

• A dominating set of a graph G = (V,E) is a subset D ⊆ V such that for every vertex v ∈ V :
v ∈ D or v adjacent to a node u ∈ D.

• A clique of a graph G = (V,E) is a subset Q ⊆ V such that for all u, v ∈ Q : {u, v} ∈ E.

Sample Solution

(a) We have already seen in exercise sheet 5 that the problem can be solved with a Turing machine
with O(n2) head movements. The same idea/algorithm shows that the problem is in P.

(b) Assume that the length of A is n. We can simply go through all combinations of tuples of A with
two for-loops with indexes i and j where i ranges from 1 to n and j ranges from i+ 1 to n. Then
we can simply test whether A[i] + A[j] == c and accept if this ever evaluates to true, otherwise
we reject. This has a runtime of O(n2) because the test can be done in O(1) and there are O(n2)
tuples.

(c) Let G = (V,E) and |V | = n. Then we know |E| = O(n2). Upon input G, we can enumerate
all possible triples (v1, v2, v3) such that v1 6= v2 6= v3 6= v1. There exist at most

(
n
3

)
= O(n3)

such triples. For each such triple (v1, v2, v3), we examine whether (v1, v2) ∈ E, (v1, v3) ∈ E, and
(v2, v3) ∈ E. Since |E| = O(n2), this examination can be done in O(n2) time. If during the
examination process, we find one triple that satisfies the requirement, we found a clique of size 3
accept G. Otherwise, when we finish examining all possible triple, we reject G since it does not
contain a clique of size 3. The runtime of the above procedure is O(n5), thus 3-Clique ∈ P.

(d) A dominating set of size 17 exists if and only if all nodes are covered by a subset of the nodes
D ⊆ V with |D| = 17. There are less than n17 sets with |D| = 17. We iterate through all of the
sets (e.g., by using 17 nested for loops iterating over the identifiers of the node set if we number
the nodes from 1 to n.). Then for each set we test whether it dominates the whole graph by
testing whether every node not in the set has a neighbor in the set. If this is the case for some set
we accept. We reject if it’s not the case for all sets.

This test can be done in time O(n) for each other node by going through the respective part of
the adjacency matrix. There are at most |V \D| ≤ n nodes outside of D for a D with |D| = 17.
So to check whether a specific D is a dominating set we only need O(n2) time. In total the time
complexity is O(n17 · n2) = O(n19). Therefore 17-DominatingSet ∈ P
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Exercise 4: Traveling Salesman Problem (TSP)

A hamiltonian cycle in a (complete) weighted graph is a cycle in a graph which contains every node
exactly once and its length is the sum of the weights of its edges. The decision variant of the traveling
salesman problem is given by

D-TSP := {〈G, k〉 |undir., simple, weighted graph G has a hamiltonian cycle of length at most k}.

You have seen in the lecture that D-TSP is NP-complete. In the following we want to prove that
a polynomial time algorithm for this decision problem would also imply a polynomial time algo-
rithm for the corresponding optimization problem (this is in fact the case for most NP-complete
decision/optimization problems.)
The objective of the optimization variant of the traveling salesman problem is to find, for a (complete)
given weighted graph G, a hamiltonian cycle with minimum length.

(a) Show how to use a polynomial number of repetitions of a D-TSP algorithm to determine the
length of a shortest hamiltonian cycle of a given graph G.

(b) Use the previous result to show that if the decision variant of TSP is in P then the optimization
variant of TSP is in P as well.

Hint: Go through the edges and try to find out whether an edge is needed for a shortest Hamiltonian
cycle.

Sample Solution

(a) Let G = (V,E) be the given graph. We know that no hamiltonian cycle is longer than the sum
of the length of all edges which we denote with S. Now, for k = 1, . . . , S we invoke one instance
of the D-TSP algorithm with 〈G, k〉. The smallest k that the algorithm accepts is the length of
a shortest hamiltonian cycle of G.

(b) Let OPT -TSP applied to a graph G return the length of a shortest hamiltonian cycle of G (cf.
the first part). If D-TSP can be solved in polynomial time then OPT -TSP runs in polynomial
time as well.

To obtain a polynomial time algorithm for the optimization problem of TSP we go through the
edges one by one and constantly remove edges from G. In the end the edges that remain in G
form a hamiltonian cycle of shortest length. Let α be the length of a shortest hamiltonian cycle
(we compute α by one invocation of OPT -TSP on G).

Now, we go through the edges one by one and constantly remove edges from the graph. Assume
that we currently process edge e, we construct a new graph G′ which is identical to the current
graph G except for the weight of edge e, which is set to ∞ (or a sufficiently large number, e.g., a
number larger than the sum of all weights). Now we run OPT -TSP on G′ and compare the result
with α. If the result is larger than α we know that e is contained in every shortest hamiltonian
cycle of the current graph. We add it to the final hamiltonian cycle and keep the edge in G. If the
result equals α (note that it cannot be smaller than α) then we know that there is a hamiltonian
cycle of length α which does not use e. We delete e from G and continue with the next edge.

The runtime of this process is polynomial as there are polynomially many edges and each invoca-
tion of OPT -TSP takes polynomial time.
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