
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, P. Bamberger, H. Ghodselahi, Y. Maus, P. Schneider

Theoretical Computer Science - Bridging Course

Summer Term 2017

Exercise Sheet 8 - Sample Solution

Exercise 1: NP and Star Operation (5 points)

Show that NP is closed under the star operation.

Remark 1: Let A be a language. The operation star (·∗) is defined as follows:

A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A where 1 ≤ i ≤ k}.

Remark 2: A collection of objects is closed under some operation if applying that operation (a finite
number of times) to members of the collection returns an object still in the collection.

Sample Solution

Let A ∈ NP. Construct nondeterministic Turing machine M to decide A∗ in nondeterministic poly-
nomial time.

M = “On input w :

1. Nondeterministically divide w into pieces w = x1x2 . . . xk.

2. For each xi, nondeterministically guess the certificates that show xi ∈ A.

3. Verify all certificates if possible, then accept. Otherwise, if verification fails, reject.”

Exercise 2: The class NPC (8 points)

Let L1, L2 be languages (problems) over alphabets Σ1,Σ2. Then L1 ≤p L2 (L1 is polynomially
reducible to L2), iff a function f : Σ∗1 → Σ∗2 exists, that can be calculated in polynomial time and

∀s ∈ Σ1 : s ∈ L1 ⇐⇒ f(s) ∈ L2.

Language L is called NP-hard, if all languages L′ ∈ NP are polynomially reducible to L, i.e.

L NP-hard⇐⇒ ∀L′ ∈ NP : L′ ≤p L.

The reduction relation ’≤p’ is transitive (L1 ≤p L2 and L2 ≤p L3 ⇒ L1 ≤p L3). Therefore, in order
to show that L is NP-hard, it suffices to reduce a known NP-hard problem L̃ to L, i.e. L̃ ≤p L.
Finally a language is called NP-complete (⇔: L ∈ NPC), if

1. L ∈ NP and

2. L is NP-hard.

1

Show HittingSet :={〈U , S, k〉 |universe U has subset of size ≤ k that hits all sets in S ⊆ 2U}∈NPC.1

Use that VertexCover := {〈G, k〉 | Graph G has a vertex cover of size at most k} ∈ NPC.

Remark: A hitting set H ⊆ U for a given universe U and a set S = {S1, S2, . . . , Sm} of subsets
Si ⊆ U , fulfills the property H ∩ Si 6= ∅ for 1 ≤ i ≤ m (H ’hits’ at least one element of every Si).
A vertex cover is a subset V ′ ⊆ V of nodes of G = (V,E) such that every edge of G is adjacent to a
node in the subset.

Hint: For the poly. transformation (≤p) you have to describe an algorithm (with poly. run-time!) that
transforms an instance 〈G, k〉 of VertexCover into an instance 〈U , S, k〉 of HittingSet, s.t. a
vertex cover of size ≤ k in G becomes a hitting set of U of size ≤ k for S and vice versa(!).

Sample Solution

We first show that hitting set belongs in NP, by engineering a deterministic polynomial time verifier
for it. Then we will prove that it is an NP-hard problem, by reducing a known NP-hard problem,
vertex cover (as mentioned in the hint), to hitting set in polynomial time.

Guess and Check: Given a finite set U , a collection S of subsets of U , a positive integer k and a
finite set H as a certificate, the following deterministic polynomial time verifier for hitting set confirms
in polynomial time that (U , S) has a hitting set of size at most k. Let λ be the sum of the sizes of
all the subsets Si in S and δ the size of U . Note that we can check if A is a subset of B with the
following brute-force algorithm: ∀a ∈ A check if ∃b ∈ B : a = b which needs O(|A| · |B|) comparisons.
We can check if H is a subset of U that has at most k elements with O(k · δ) comparisons and if it
contains at least one element from each subset Si in the collection S, with O(λ · k) comparisons. We
accept iff both checks are true. These two checks are obviously equivalent to the problem’s definition,
so hitting set has a polynomial time verifier. Therefore it belongs in NP.

Polynomial Reduction of VertexCover to HittingSet: We will create a polynomial time
reduction from vertex cover to hitting set, proving that since vertex cover is NP-hard, hitting set
must also be NP-hard.
The reduction takes as input an undirected graph G = (V,E), where V is a set of nodes and E a set
of edges defined over those nodes, as well as a positive integer k and outputs the set V , the collection
E = {e1, e2, . . . , en} of subsets of V and the positive integer k. We claim the following equivalence
holds:

“G has a vertex cover of size at most k” ⇔ “(V,E) has a hitting set of size at most k”

Here is the proof:

“G has a vertex cover of size at most k” ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ edge ei = {ui, vi} ∈ E, ui ∈ V ′ or vi ∈ V ′ ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ subset ei in collection E ∃c ∈ ei : c ∈ V ′ ⇔
“(V,E) has a hitting set of size at most k”

This reduction takes time linear to the size of the input (all it does is copy the input to the output),
therefore polynomial. Also, as we showed, it is correct. Therefore, hitting set is at least as hard as
vertex cover and since vertex cover is NP-hard, so is hitting set.
One might notice that this reduction was rather straightforward. This makes sense, since vertex cover
is a special version of hitting set, where each subset Si in the collection S has exactly two elements of
U . Obviously, no problem can be harder than its generalization and since vertex cover is NP-hard,
hitting set (as a generalization of vertex cover) must also be NP-hard.

1The power set 2U of some ground set U is the set of all subsets of U . So S ⊆ 2U is a collection of subsets of U .

2

Exercise 3: Complexity Classes: Big Picture (2+3+2 points)

(a) Why is P ⊆ NP?

(b) Show that P ∩NPC = ∅ if P 6= NP.
Hint: Assume that there exists a L ∈ P ∩NPC and derive a contradiction to P 6= NP.

(c) Give a Venn Diagram showing the sets P,NP,NPC for both cases P 6= NP and P = NP.
Remark: Use the results of (a) and (b) even if you did not succeed in proving those.

Sample Solution

(a) If L ∈ P there is a deterministic Turing machine that decides L in polynomial time. Then L ∈ NP
simply by definition since a deterministic Turing machine is a special case of a non-deterministic
one.

(b) As the hint suggests we assume that there is a language L which is NP-complete and simulta-
neously solvable in polynomial time by a Turing machine. We use this language L to show that
NP ⊆ P, which together with (a) implies NP = P, i.e., a contradiction to our premise NP 6= P.
Hence L cannot exist if NP 6= P.

So let L′ ∈ NP. We want to show that L′ is in P to obtain the contradiction. Since L is also
NP-hard, we can solve the decision problem L′ via L by using the polynomial reduction L′ ≤p L.
In particular for any string s ∈ L′ we have the equivalency s ∈ L′ ⇐⇒ f(s) ∈ L, where f is
induced by the reduction.

We construct a Turing machine for L′ that runs in poly. time. For instance s it first computes
f(s) in polynomial time and then uses the Turing machine for L as a subroutine to return the
answer of f(s) ∈ L in polynomial time. In total, we require only polynomial time to decide s ∈ L′
which means L′ ∈ P.

(c) See Figure 1. For the case P = NP, the notion of NP-hardness becomes utterly meaningless
since the class NP can be polynomially reduced to every other language except Σ∗ and ∅. In
order to show that L′ ≤p L for an L 6= Σ∗, ∅ and for all L′ ∈ NP = P, we need show that there
is a polynomially computable mapping f such that ∀s ∈ Σ∗ : s ∈ L′ ⇔ f(s) ∈ L.

But such a mapping f always exists for L 6= Σ∗, ∅. We simply have to use a known ’yes-instance’
y ∈ L and a ’no-instance’ n /∈ L. Then we define for s ∈ Σ∗ that f(s) := y if s ∈ L′ and f(s) := n
if s /∈ L′. This obviously fulfills the above equivalency. Moreover f is polynomially computable
since we can find out whether s ∈ L′ in polynomial time.

3

NP

NPC

P

NP-hard

(a) P 6= NP

P = NP

NPC
= P \ {Σ∗, ∅}

NP-hardNP-hard

{Σ∗, ∅}

(b) P = NP

Figure 1: Venn-Diagram of the Language classes P,NP,NPC,NP-hard.

4

