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Exercise 1: Completeness and Correctness of Calculi (2+1+1 points)

A calculus C is called correct if for every knowledge base KB and formula ϕ the following holds

KB `C ϕ =⇒ KB |= ϕ.

Calculus C is called complete if
KB |= ϕ =⇒ KB `C ϕ.

Remark: For the definition of ’ |=’ consult Exercise Sheet 9 or the lecture.

Consider the following calculuses

C1 :
ϕ↔ ψ

ϕ→ ψ,ψ → ϕ
C2 :

ϕ,ϕ→ ψ

ψ
C3 :

ϕ,ψ → ϕ

ψ

(a) Show that the C1 and C2 are both correct. Hint: Use truth tables. Give a short explanation why
C1,C2 are correct.

(b) Show that C3 is not correct. Hint: Use a truth table

(c) Show that C1,C2,C3 are not complete by giving a knowledge base KB and a formula ϕ such
that KB |= ϕ but not KB `Ci

ϕ.

Sample Solution

(a) The inference rules we used are known logical entailments from the lecture which is why they
are correct. We prove this for C1,C2 with a truth table by checking whether every model of the
formulae in the premise is also a model of the inferred formulae.

model of KB ϕ ψ ϕ↔ ψ ϕ→ χ ψ → χ

3 0 0 1 1 1
0 1 0 1 0
1 0 0 0 1

3 1 1 1 1 1

model of KB ϕ ψ ϕ→ ψ

0 0 1
0 1 1
1 0 0

3 1 1 1

(b) Consider ϕ,ψ and an interpretation I, such that I(ϕ) = T and I(ψ) = F . Then I is a model of
the premise since I(ϕ) = T, I(ψ → ϕ) = T but not of the inferred formula since I(ψ) = F .

1



(c) Inference rules of a calculus can only accomplish syntactical replacement much like a rules of a
grammar and carry no semantics. This means e.g., that if a symbol does occur neither in the
knowledge base nor in the inference rules, we can never derive such a symbol.

Thus we have p→ q |= ¬p ∨ q but p→ q 0C1 ¬p ∨ q.
Another way to argue, is that from an unsatisfiable formula ⊥ we can derive everything by defini-
tion: ⊥ |= ϕ since all models of ⊥ (i.e., none) are models of ϕ. However we have no such inference
rule in C2 and C3. Thus for an arbitrary ϕ we have ⊥ |= ϕ but ⊥ 0C2 ϕ, ⊥ 0C3 ϕ.
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Exercise 2: Resolution (1+2+3 points)

Due to the Contradiction Theorem (cf. lecture) for every knowledge base KB and formula ϕ it holds

KB |= ϕ ⇐⇒ KB ∪ {¬ϕ} |= ⊥.

Remark: ⊥ is a formula that is unsatisfiable.

Thus, in order to show that KB entails ϕ, we show that KB∪{¬ϕ} entails a contradiction. A calculus
C is called refutation-complete if for every knowledge base KB

KB |= ⊥ =⇒ KB `C ⊥.

Therefore, if we have a refutation-complete calculus C, it suffices to show KB ∪{¬ϕ} `C ⊥ in order
to prove KB |= ϕ.

The Resolution Calculus1 R is correct and refutation-complete for knowledge bases that are given
in Conjunctive Normal Form (CNF). A knowledge base KB is in CNF if it is of the form KB =
{C1, . . . , Cn} where its clauses Ci = {Li,1, . . . , Li,mi} each consist of mi literals Li,j

Remark: KB represents the formula C1 ∧ . . . ∧ Cn with Ci = Li,1 ∨ . . . ∨ Li,mi.

The Resolution Calculus has only one inference rule, the resolution rule:

R :
C1 ∪ {L}, C2 ∪ {¬L}

C1 ∪ C2
.

Remark: L is a literal and C1 ∪ {L}, C2 ∪ {¬L} are clauses in KB (C1, C2 may be empty). To show
KB `R ⊥, you need to apply the resolution rule, until you obtain two conflicting one-literal clauses L
and ¬L. These entail the empty clause (defined as 2), i.e. a contradiction ( {L,¬L} `R ⊥ ).

(a) We want to show {p ∧ q, p → r, (q ∧ r) → u} |= u. First convert this problem instance into a
form that can be solved via resolution as described above. Document your steps.

(b) Now, use resolution to show {p ∧ q, p→ r, (q ∧ r)→ u} |= u.

(c) Consider the sentence “Heads, I win”. “Tails, you lose”. Design a propositional KB that repre-
sents these sentences (create the propositions and rules required). Then use propositional resolu-
tion to prove that I always win.

Sample Solution

(a) We transform {p ∧ q, p→ r, (q ∧ r)→ u} |= u into the form KB |= ⊥ where KB is in CNF. The
given entailment is equivalent to {p ∧ q, p → r, (q ∧ r) → u,¬u} |= ⊥ using the Contraposition
Theorem, which we described above. Now we transform the knowledge base into CNF using
DeMorgan’s rule and distribution among others.

{p ∧ q, p→ r, (q ∧ r)→ u,¬u}
≡ {p, q,¬p ∨ r,¬(q ∧ r) ∨ u,¬u}
≡ {p, q,¬p ∨ r,¬q ∨ ¬r ∨ u,¬u}
≡ {{p}, {q}, {¬p, r}, {¬q,¬r, u}, {¬u}}

1Complete calculi are unpractical, since they have too many inference rules. More inference rules make automated
proving with a computer significantly more complex. The Resolution Calculus is an appropriate technique to avoid this
additional complexity, since it has only one inference rule.
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(b) Now we can use the Resolution calculus R to derive a contradiction (the empty clause 2).

{¬p, r}, {p} `R {r}
{¬q,¬r, u}, {r} `R {¬q, u}
{¬q, u}, {u} `R {¬q}
{¬q}, {q} `R 2

Since R is correct, this proves the original entailment.

(c) 1) Make our objects: H : heads T : tails I : I win Y : You win.

2) State your rules: H → I and T → ¬Y .

3) We now must specify implicit rules. The system does not know that heads and tails are
mutually exclusive: H ⊗ T and I ⊗ Y .

4) Convert to CNF: ¬H ∨ I ¬T ∨ ¬Y (H ∨ T ) ∧ (¬H ∨ ¬T ) (I ∨ Y ) ∧ (¬I ∨ ¬Y ).

5) We want to prove I, hence we insert the literal ¬I for the proof by contradiction. Now we
start resolving clauses:

• ¬T ∨ ¬Y and H ∨ T resolves to H ∨ ¬Y .

• ¬H ∨ I and H ∨ ¬Y resolves to I ∨ ¬Y .

• ¬I and I ∨ ¬Y resolves to ¬Y .

• I ∨ Y and ¬Y resolves to I.

• I and ¬I resolves to 2.

Consequently, we have a contradiction. Thus, I is true.
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Exercise 3: Predicate Logic: Construct Formulae (1+1+1+1 points)

Let S = 〈{x, y, z}, ∅, ∅, {R}〉 be a signature. Translate the following sentences of first order formula
over S into idiomatic English. Use R(x, y) as statement “x is a part of y”.

(a) ∃x∀yR(x, y).

(b) ∃y∀xR(x, y).

(c) ∀x∀y∃z(R(x, z) ∧R(y, z))

(d) ∀x∃y(R(y, x) ∧ ¬∃z(R(z, y) ∧ ¬R(y, z)))

Sample Solution

(a) Something is a part of everything.

(b) Something has everything as a part.

(c) For any two things, there is something of which they are both a part.

(d) Everything has a part which has no part of which it is not also a part.

5



Exercise 4: Predicate Logic: Entailment (2+2+2 points)

Let ϕ,ψ be first order formulae over signature S. Similar to propositional logic, in predicate logic we
write ϕ |= ψ if every model of ϕ is also a model for ψ. We write ϕ ≡ ψ if both ϕ |= ψ and ψ |= ϕ. A
knowledge base KB is a set of formulae. A model of KB is model for all formulae in KB. We write
KB |= ϕ if all models of KB are models of ϕ. Show or disprove the following entailments.

(a) (∃xR(x)) ∧ (∃xP (x)) ∧ (∃xT (x)) |= ∃x (R(x) ∧ P (x) ∧ T (x)).

(b) (∀x∀y f(x, y)
.
= f(y, x)) ∧ (∀x f(x, c)

.
= x) |= ∀x f(c, x)

.
= x.

(c) (∀xR(x, x)) ∧ (∀x∀y R(x, y) ∧R(y, x)→x
.
= y) ∧ (∀x∀y∀z R(x, y) ∧R(y, z)→R(x, z))

|= ∀x∀y R(x, y) ∨R(y, x).

Hint: Consider order relations. E.g., a ≤ b (a less-equal b) and a|b (a divides b).

Sample Solution

(a) The stated entailment is false (it holds in the other direction though). In order to disprove it, we
give a model for the left side which is not a model for the right side.

Let I = 〈{a, b}, ·I〉 with RI = {a}, P I = {b}, and T I = {a}. This makes the left side true since
there exists an element x = a that makes R(x) and T (x) true and an element x = b that makes
P (x) true (Note the brackets around the three ∃ quantifiers which mean that the three elements
need not necessarily be the same).

However R(a) ∧ P (a) ∧ T (a) = T ∧ F ∧ T = F and R(b) ∧ P (b) ∧ T (b) = F ∧ T ∧ F = F thus the
right side is false (there exists no element which makes the three relations’ symbols R,P, T true,
since we tested all that are in the domain).

(b) The stated entailment holds. We prove this by picking an arbitrary model (!) I = 〈D, ·I〉 of the
left-hand formula. We show that I is a model for the right-hand formula, too. For that purpose
let x be an arbitrary element from D.

Since I is a model for the left side we already know f(x, cI)
.
= x. The first condition in the left

formula encodes the commutative property. Since cI is also an element from the domain D we
know f(x, c) = f(cI , x) and thus f(cI , x)

.
= x. Since x was arbitrary we have ∀x f(cI , x)

.
= x.

(c) The formula on the left side encodes the properties of an order relation. The formula on the right
side encodes the property of totality of an order, which means that every element is related to
(read: can be compared with) every other element. However, in general an order relation does
not need to be total (which is called a partial order).

The hint proposes two order relations, one of which is total over the domain of integers Z (either
’x ≤ y’ or ’x ≤ y’ or both) whereas the other is not (it may happen that neither x|y nor x|y).
Thus the logical entailment is false since with Z and the ’divides’-relation we have a model of the
left-hand formula which is no model of the right-hand one (it is not total).

We formalize this as follows. Let I = 〈Z, ·I〉 with RI := {(x, y) ∈ Z | x divides y}. Obviously we
have the reflexive property since x ∈ Z divides itself. If x ∈ Z divides y ∈ Z and y ∈ Z divides
z ∈ Z then x also divides z which gives us transitivity. Finally, if x divides y and vice versa then
y is multiple of x and vice versa which means that the multiplicand must in both cases be 1 thus
both x and y are equal which gives us the antisymmetry property.

This means that I is a model of the left-hand formula. Now consider the two primes x = 2
and y = 3. By definition of prime numbers neither of the two can divide the other. Thus
∀x∀y R(x, y) ∨R(y, x) is false. Therefore I can be no model of the right-hand formula.
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