Informatik II - SS 2018 (Algorithmen & Datenstrukturen)

Vorlesung 16 (18.6.2018)

Graphenalgorithmen V (Kürzeste Wege)

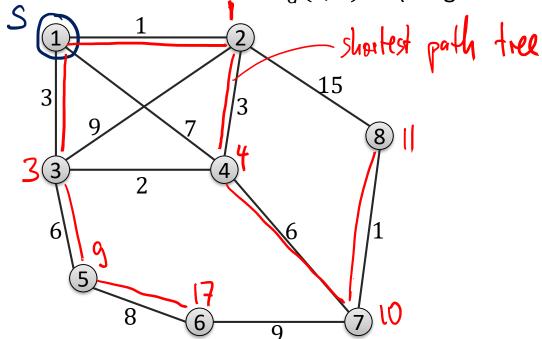
Fabian Kuhn
Algorithmen und Komplexität

Kürzeste Wege

Annahme! Grand gerichteter Graph UNI

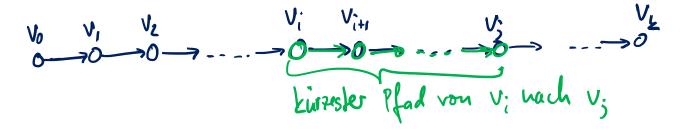
Problem

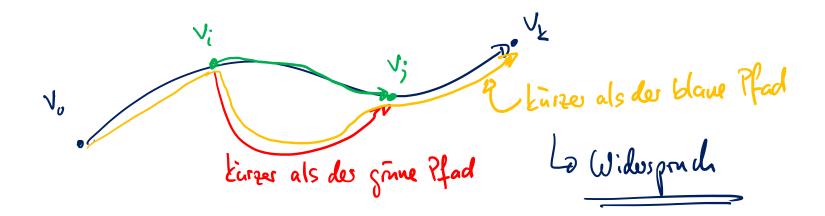
- Gegeben: gewichteter Graph G = (V, E, w), Startknoten $\underline{s} \in V$
 - Wir bezeichnen Gewicht einer Kante (u, v) als w(u, v)
 - Annahme: $\forall e \in E$: w(e) ≥ 0
- Ziel: Finde kürzeste Pfade / Distanzen von s zu allen Knoten
 - Distanz von s zu v: $d_G(s, v)$ (Länge eines kürzesten Pfades)



Lemma: Falls v_0, v_1, \dots, v_k ein kürzester Pfad von v_0 nach v_k ist, dann gilt für alle $0 \le i \le j \le k$, dass der Teilpfad v_i, v_{i+1}, \dots, v_j ein kürzester Pfad von v_i nach v_j ist.

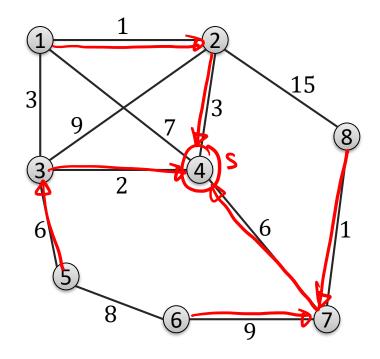
gilt auch bei negativen Kantengewichten…





Shortest-Path Tree

- Im Knoten <u>s</u> gewurzelter Spannbaum, welcher kürzeste Pfade von s zu allen Knoten enthält.
 - Einen solchen Baum gibt es immer (folgt insb. aus der Opt. der Teilpfade)
- Bei ungewichteten Graphen: BFS-Spannbaum
- **Ziel:** Finde einen "Shortest Path Tree" (SPT)



Wir wollen für alle Knoben V das, v) und den Parent-Knoben in einem SPT finden Algorithmus von Edsger W. Dijkstra (1959 publiziert)

Idee:

Wir starten bei s und bauen schrittweise den Spannbaum auf

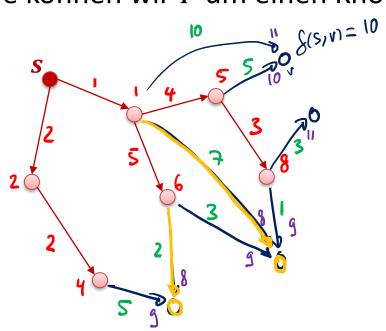
Invariante:

Algorithmus hat zu jeder Zeit einen bei s gewurzelten Teilbaum eines "Shortest Path Tree".

- Ziel: In jedem Schritt des Algorithmus einen Knoten hinzufügen
 - Am Anfang: Teilbaum besteht nur aus s
 (erfüllt Invariante trivialerweise...)
 - 1. Schritt: Wegen der Optimalität der Teilpfade, muss es einen kürzesten
 Pfad bestehend aus nur einer Kante geben...
 - Füge Knoten mit kleinstem Abstand von s zum Baum hinzu

Gegeben: Einen in s gewurzelten T, so dass T Teilbaum eines "Shortest Path Tree" von s in s ist.

Wie können wir T um einen Knoten erweitern?



u im Baum T,
$$v \notin T$$
, Kante (u,v)

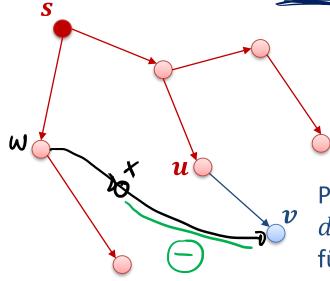
$$d_{G}(s,v) \leq d_{G}(s,u) + \omega(u,v)$$
Nehme Knolen $u \in T$, $v \notin T$, sodass
$$(u,v) \in E \text{ und}$$

Dijkstras Algorithmus: Ein Schritt

Gegeben: T ist Teilbaum eines "Shortest Path Tree" von s in G ist.

Lemma: Für die Kante (u, v) mit $\underline{u \in T}$ und $\underline{v \notin T}$, welche $d_G(s, u) + w(u, v)$ minimiert, gilt:

$$d_G(s,v) = \underline{d_G(s,u) + w(u,v)}$$



Paar (u, v) minimiert $d_G(s, u) + w(u, v)$ für $u \in T, v \notin T$

Lange des sohn Rfodes $\geq d_G(S,W) + W(W,X) \geq d_G(S,N) + W(U,V)$ beine neg. Kantengewichte

Invariante:

Algorithmus hat zu jeder Zeit einen bei *s* gewurzelten Teilbaum eines "Shortest Path Tree" *T*.

- Am Anfang ist $T = (\{s\}, \emptyset)$
- Für jeden Knoten $v \notin T$ berechnet man zu jedem Zeitpunkt

$$\delta(s,v) \coloneqq \min_{u \in T \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

- sowie den Eingangsnachbar $u=:\alpha(v)$, welcher den Ausdruck minimiert...
- Invariante $\Longrightarrow \delta(s,v) \ge d_G(s,v)$
- Lemma auf letzter Folie:

Für das minmale $\delta(s, v)$ gilt: $\delta(s, v) = d_G(s, v)$

Dijkstras Algorithmus

S(s,v)

Initialisierung $T = (\emptyset, \emptyset)$

- $\delta(s,s) = 0$, sowie $\delta(s,v) = \infty$ für alle $v \in V \setminus S$
- $\alpha(v) = \text{NULL für alle } v \in V \setminus S$ (braucht's nicht für s)

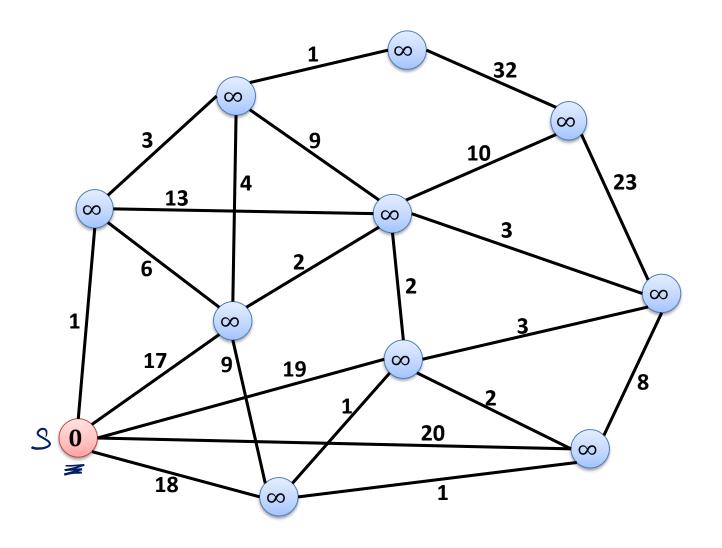
Interationsschritt

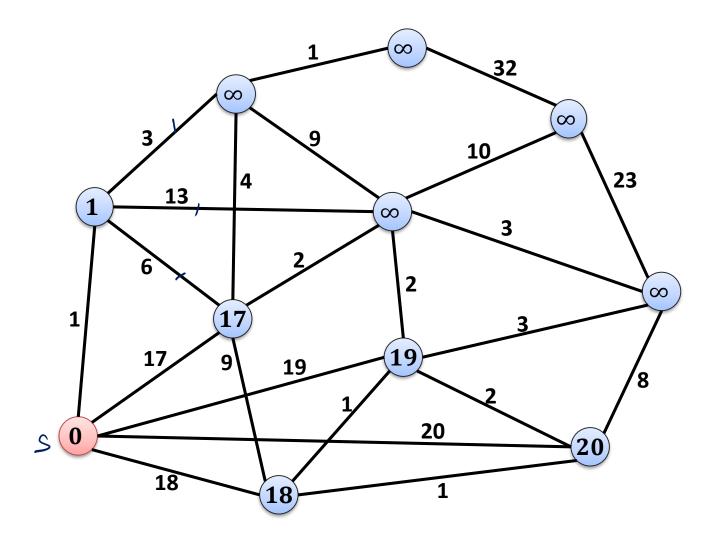
• Wähle Knoten v mit kleinstem

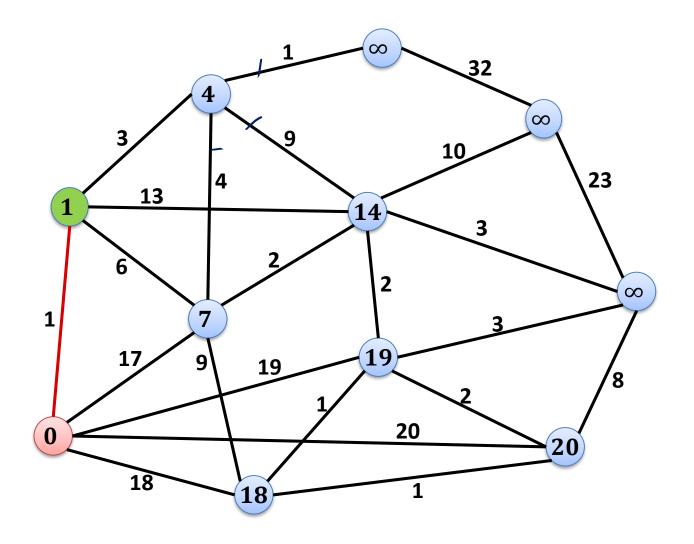
$$\underbrace{\delta(s,v)}_{u \in T \cap N_{\text{in}}(v)} \underbrace{d_G(s,u) + w(u,v)}_{u \in T \cap N_{\text{in}}(v)}$$

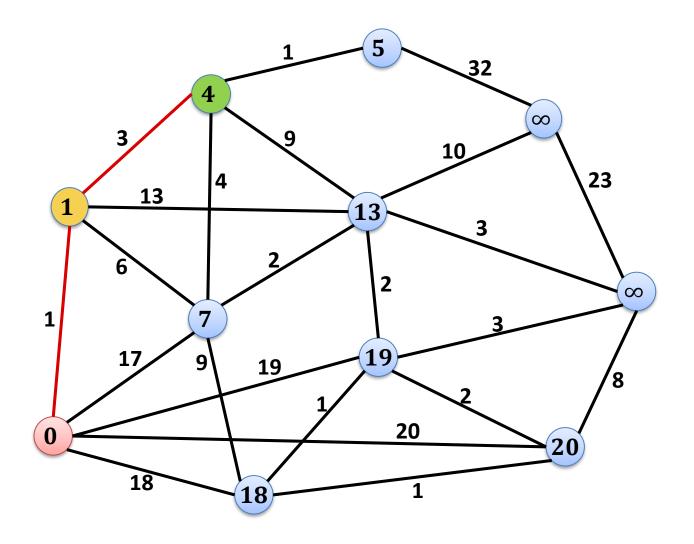
$$\delta(s,x) := \min\{\delta(s,x), \delta(s,v) + w(v,x)\}$$

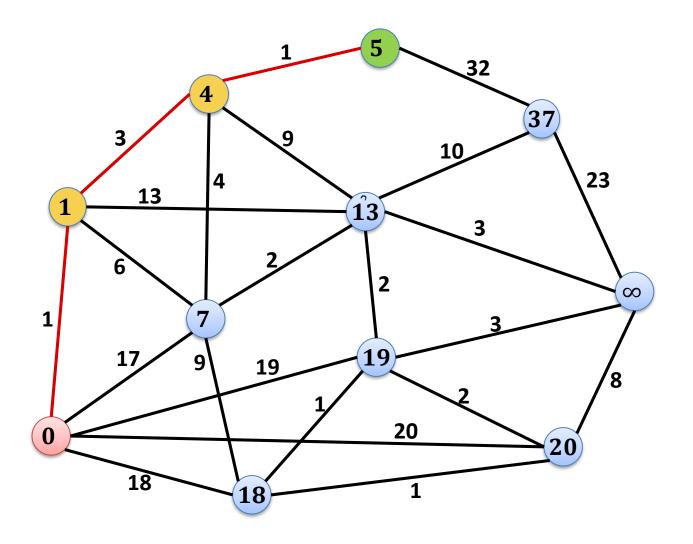
- Falls nötig, setze auch $\alpha(x) = v$
- Füge Kante $(\alpha(v), v)$ zum Baum T hinzu.

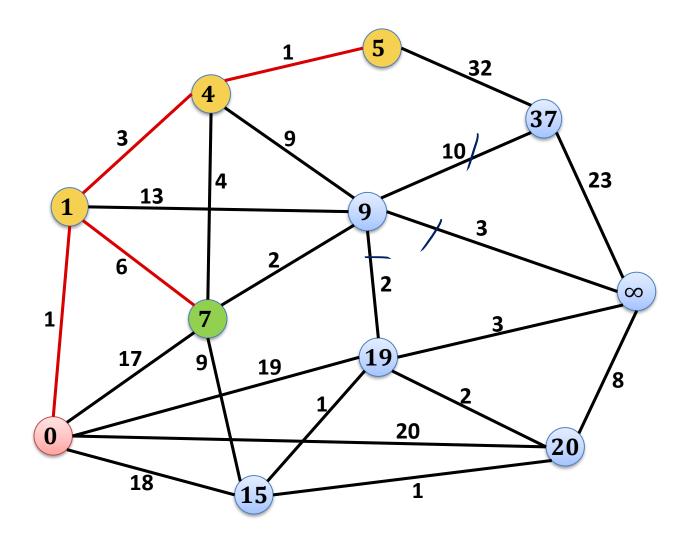


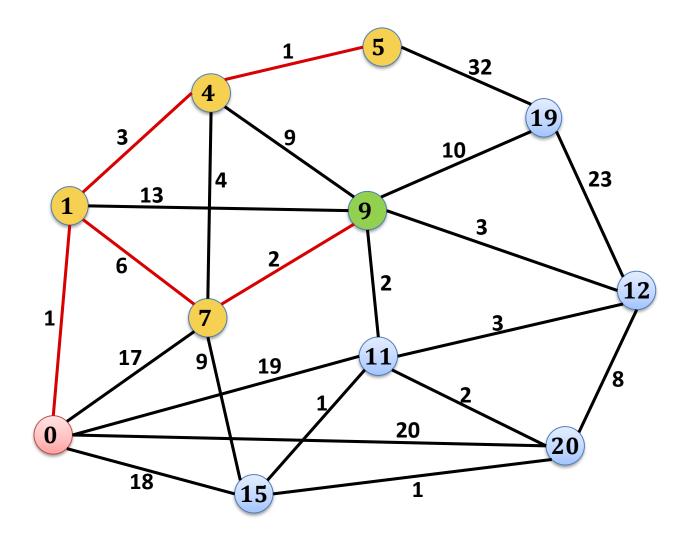


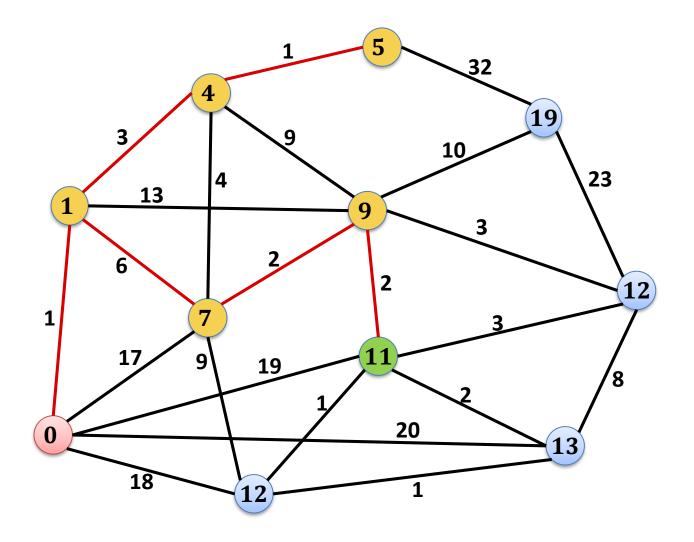












18

Dijkstras Algorithmus: Implementierung

Initialisierung $T = (\emptyset, \emptyset)$

- $\delta(s,s) = 0$, sowie $\delta(s,v) = \infty$ für alle $v \in V \setminus S$
- $\alpha(v) = \text{NULL für alle } v \in V \setminus S$ (braucht's nicht für s)

Interationsschritt

ahnlich wx des MST Alg. von Prim

• Wähle Knoten v mit kleinstem

$$\delta(s,v) \coloneqq \min_{u \in T \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

• Gehe durch die ausgehenden Nachbarn $x \in V \setminus T$ und setze

$$\delta(s,x) \coloneqq \min\{\delta(s,x), \delta(s,v) + w(v,x)\}$$

- Falls nötig, setze auch $\alpha(x) = v$
- Füge Kante $(\alpha(v), v)$ zum Baum T hinzu.

Heap / Priority Queue:

Verwaltet eine Menge von (key,value)-Paaren

Operationen:

create : erzeugt einen leeren Heap

H.insert(x, key) : fügt Element x mit Schlüssel key ein

• *H.getMin()* : gibt Element mit kleinstem Schlüssel zurück

 H.deleteMin() : löscht Element mit kleinstem Schlüssel (gibt Element mit kleinstem Schlüssel zurück)

H.decreaseKey(x, newkey) : Falls newkey kleiner als der aktuelle
 Schlüssel von x ist, wird der Schlüssel von x auf newkey gesetzt

Erinnerung: Prims MST Algorithmus

```
H = new priority queue; A = \emptyset
for all u \in V \setminus \{s\} do
     H.insert(u, \infty); \alpha(u) = NULL
H.insert(s, 0)
while H is not empty do
     u = H.deleteMin()
     for all unmarked neighbors v of u do
          if w(\{u, v\}) < d(v) then
               H.decreaseKey(v, w(\{u,v\}))
               \alpha(v) = u
     if u \neq s then A = A \cup \{\{u, \alpha(u)\}\}
```

21

Dijkstras Algorithmus: Implementierung

```
H = new priority queue; A = \emptyset
for all u \in V \setminus \{s\} do
     H.insert(u, \infty); \delta(s,u) = \infty; \alpha(u) = NULL
H.insert(s, 0)
while H is not empty do
     u = H.deleteMin() v unmarked (v in priority queue)
     for all neighbors v of u do
           if \delta(s,u) + w(u,v) < \delta(s,v) then
                \delta(s,v) = \delta(s,u) + w(u,v)
                \overline{H}.decreaseKey(v, \delta(s, v))
                \alpha(v) = u
     if u \neq s then A = A \cup \{\{u, \alpha(u)\}\}
```


- Algorithmus-Implementierung ist fast identisch, wie diejenige von Prims MST Algorithmus
- Anzahl Heap-Operationen:

Laufzeit mit binären Heaps:

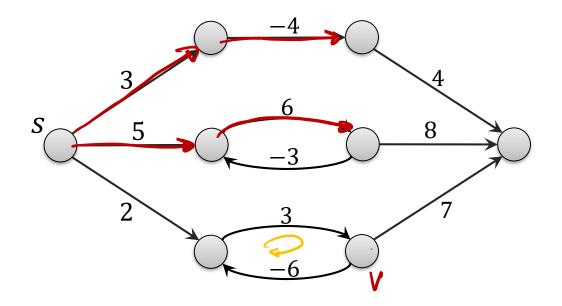
$$O(m \log n)$$

Laufzeit mit Fibonacci Heaps:

$$O(m + n \log n)$$

 Kürzeste Pfade können auch in Graphen mit negativen Kantengewichten definiert werden

Beispiel

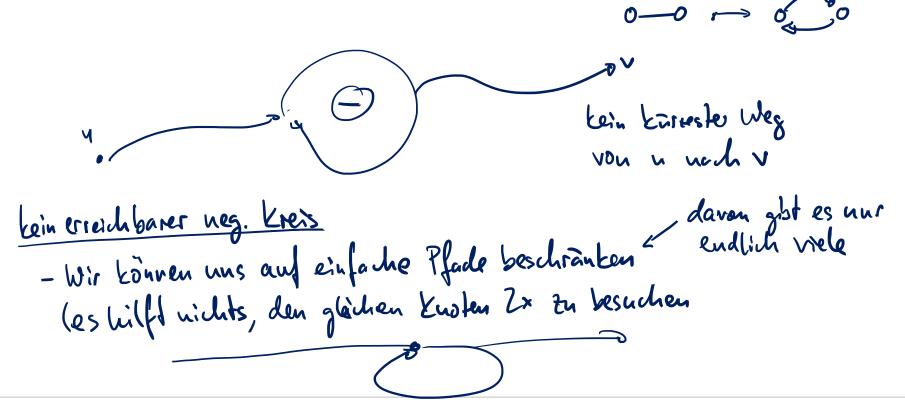


Negative Kantengewichte

REIBURG

Satz: In einem gerichteten, gewichteten Graphen G hat es genau dann einen kürzesten Pfad von u nach v, falls es keinen negativen Kreis gibt, welcher von u erreichbar ist und von welchem v erreichbar ist.

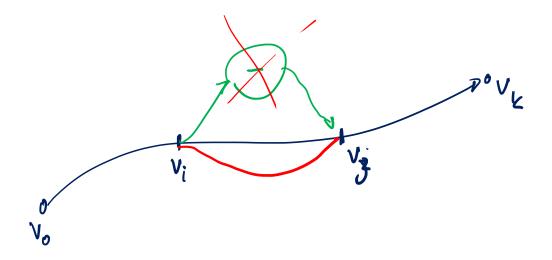
• gilt auch für ungerichtete Graphen, falls Kanten $\{u, v\}$ als 2 gerichtete Kanten (u, v) und (v, u) betrachtet werden



Optimalität von Teilpfaden

Lemma: Falls v_0, v_1, \ldots, v_k ein kürzester Pfad von v_0 nach v_k ist, dann gilt für alle $0 \le i \le j \le k$, dass der Teilpfad $v_i, v_{i+1}, \ldots, v_j$ ein kürzester Pfad von v_i nach v_j ist.

gilt auch bei negativen Kantengewichten...



Zur Erinnerung: Dijkstras Algorithmus

UNI FREIBURG

- Algorithmus kennt zu jedem Zeitpunkt einen Teilbaum T^\prime eines Shortest Path Trees
- Man merkt sich zudem für jeden Knoten, wie er über ≤ 1 Kante von T' am besten erreicht werden kann und nimmt in jedem Schritt den besten solchen Knoten zu T' hinzu.

Dijkstras Algorithmus

Initialisierung $T = (\emptyset, \emptyset)$

- $\delta(s,s) = 0$, sowie $\delta(s,v) = \infty$ für alle $v \in V \setminus S$
- $\alpha(v) = \text{NULL für alle } v \in V \setminus S$ (braucht's nicht für s)

Interationsschritt

• Wähle Knoten v mit kleinstem

$$\delta(s,v) \coloneqq \min_{u \in T \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

• Gehe durch die Ausgangsnachbarn $x \in V \setminus T$ und setze

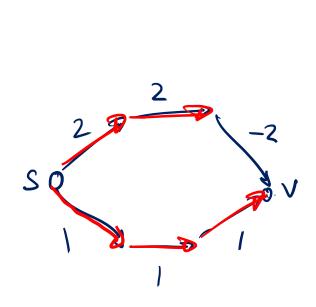
$$\delta(s,x) \coloneqq \min\{\delta(s,x), \delta(s,v) + w(v,x)\}$$

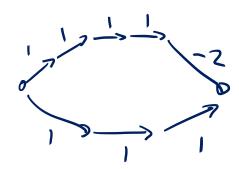
- Falls nötig, setze auch $\alpha(x) = v$
- Füge Kante $(\alpha(v), v)$ zum Baum T hinzu.

Dijkstras Algorithmus und negative Gewichte

Funktioniert Dijkstras Algorithmus auch bei negativen Kantengewichten?

Antwort: nein





29

• Zur Vereinfachung, berechnen wir nur die Distanzen $d_G(s,v)$

Annahme:

- Für alle Knoten v: Algorithmus hat Wert $\underline{\delta(s,v)} \geq d_G(s,v)$
- Initialisierung: $\delta(s,s) = 0$, $\delta(s,v) = \infty$ für $v \neq s$

Beobachtung:

• Falls $(u,v) \in E$, so dass $\underbrace{\delta(s,u) + w(u,v)}_{\text{da}} < \underbrace{\delta(s,v)}_{\text{da}}$, dann können wir $\delta(s,v)$ verkleinern, da $\underbrace{d_G(s,v)}_{\text{da}} \leq \underbrace{\delta(s,u)}_{\text{da}} + \underbrace{w(u,v)}_{\text{la}}$.

$$d_{\varsigma}(s,v) \leq d_{\varsigma}(s,u) + \omega(u,v)$$

- EIBURG
- Betrachte alle Kanten (u,v) und versuche $\delta(s,v)$ zu verbessern
 - solange, bis alle Distanzen korrekt sind $(\forall v \in V : \delta(s, v) = d_G(s, v))$

repeat

for all
$$(u,v) \in E$$
 do
if $\delta(s,u) + w(u,v) < \delta(s,v)$ then
$$\underline{\delta(s,v)} \coloneqq \delta(s,u) + w(u,v) \qquad (\text{parend}(v) := w)$$
until $\forall v \in V \colon \overline{\delta(s,v)} = d_G(s,v)$

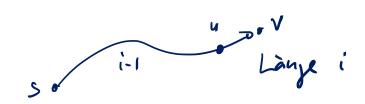
Wieviele Wiederholungen sind nötig?

nach 1 Her: 8(SIN) = d6(SIN)

- Betrachte alle Kanten (u,v) und versuche $\delta(s,v)$ zu verbessern
 - solange, bis alle Distanzen korrekt sind $(\forall v \in V : \delta(s, v) = d_G(s, v))$

for
$$i := 1$$
 to $n-1$ do
for all $(u,v) \in E$ do
if $\delta(s,u) + w(u,v) < \delta(s,v)$ then
 $\delta(s,v) \coloneqq \delta(s,u) + w(u,v)$

Nach i Wiederholungen ist $\delta(s, v) \leq d_G^{(i)}(s, v)$, wobei $d_G^{(i)}(s, v)$ die Länge des kürzesten Pfades aus höchstens i Kanten bezeichnet.



Lemma: Falls der Graph keine negativen Kreise enthält, sind am Schluss alle Distanzen korrekt berechnet.

leine neg. Kreise
$$\Longrightarrow d_G(s,r) = d_G(s,v)$$
von s'erreichbar

Löhnen uns auf einfahr
Pfade beschrönten

$$\forall v: S(S_1v) = d_G^{(i-1)}(S_1v) = d_G(S_1v)$$

EIBURG

33

Wir werden sehen: Falls es einen (von s erreichbaren) negativen
 Kreis hat, dann gibt es für irgendeine Kante eine Verbesserung.

$$\exists (u,v) \in E : \delta(s,u) + w(u,v) < \delta(u,v)$$

Bellman-Ford Algorithmus

```
for i := 1 to n-1 do

for all (u,v) \in E do

if \delta(s,u) + w(u,v) < \delta(s,v) then

\delta(s,v) \coloneqq \delta(s,u) + w(u,v)

for all (u,v) \in E do

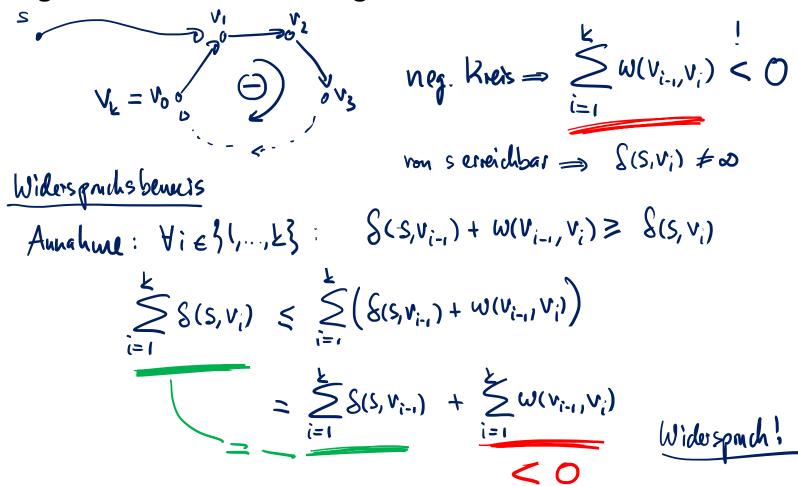
if \delta(s,u) + w(u,v) < \delta(s,v) then

return false

return true
```

Negative Kreise erkennen

Lemma: Falls G einen von S erreichbaren negativen Kreis enthält, dann gibt der Bellman-Ford Algorithmus false zurück.



Ein Shortest Path Tree kann in der üblichen Art konstruiert werden

Initialisierung:

- $\delta(s,s) = 0$, für $v \neq s : \delta(s,v) = \text{NULL}$
- $\alpha(s) = s$ (Wurzel zeigt auf sich selbst), für $v \neq s : \alpha(v) = \text{NULL}$

In jedem Schleifendurchlauf:

• • •

if
$$\delta(s,u) + w(u,v) < \delta(s,v)$$
 then $\delta(s,v) \coloneqq \delta(s,u) + w(u,v)$ $\alpha(v) \coloneqq u$

- Am Schluss zeigt $\alpha(v)$ zum Parent in einem Shortest Path Tree
 - falls es keine negativen Kreise hat...

Bellman-Ford Alg.: Zusammenfassung

REIBURG

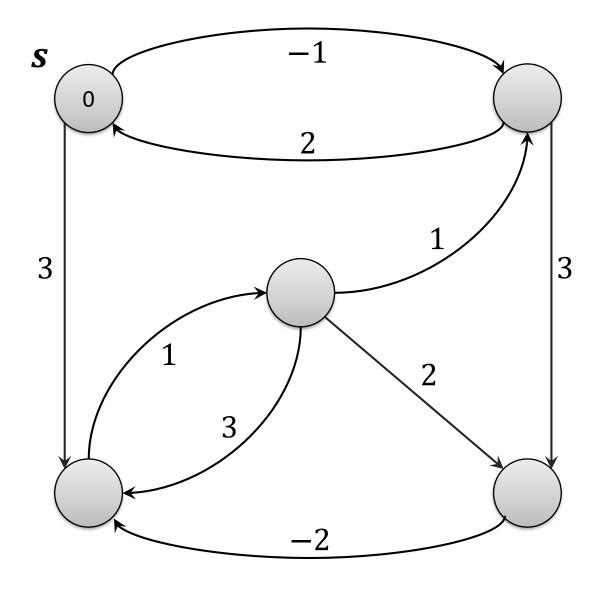
Theorem: Falls es einen von s erreichbaren negativen Kreis hat, wird dieser vom Bellman-Ford Algorithmus erkennt. Falls kein solcher negativer Kreis existiert, berechnet der Bellman-Ford Algorithmus in Zeit $O(|V| \cdot |E|)$ einen Shortest Path Tree.

Laufzeit for
$$i=1$$
 to $n-1$
for $dl(u,v) \in E$

$$0(m \cdot n)$$

$$0(1)$$
Discora: $0(m + n \log n)$

• Man kann den Algorithmus einfach so abändern, dass er für alle v, für welche ein kürzester Pfad von s existiert, einen solchen Pfad berechnet.



Routing-Pfade in Netzwerken

Ziel: Optimale Routing-Pfade zu einer Destination t

- Von jedem Knoten aus wollen wir wissen, zu welchem Nachbar einen Nachricht geschickt werden muss.
- Entspricht einem Shortest Path Tree, falls alle Kanten umgedreht werden (transponierter Graph)

Algorithmus:

- Knoten merken sich aktuelle Distanz $\delta(u,t)$ und den aktuell besten Nachbar
- Alle Knoten schauen gleichzeitig (parallel), ob's bei irgendeinem Nachbar eine Verbesserung gibt

$$\exists (u, v) \in E : w(u, v) + \delta(v, t) < \delta(u, t)$$

entspricht einer parallelen Version des Bellman-Ford Algorithmus