Informatik II - SS 2018 (Algorithmen & Datenstrukturen)

Vorlesung 22 (16.7.2018)

Greedy Algorithmen II (Datenkompression)

Fabian Kuhn Algorithmen und Komplexität

Datenkompression

- Reduziert Größen von Files
- Viele Verfahren für unterschiedliche Anwendungen: MP3, MPEG, JPEG, ...
- Wie funktioniert Datenkompression?

Zwei Typen von Kompression:

- Verlustbehaftete Kompression (Bilder, Musik, Filme,...)
- Verlustfreie Kompression (Programme, Texte, ...)

Beispiel:

- Alphabet Σ={a,b,c,d,...,x,y,z, ,.,:,!,?,&} (32 Zeichen)
- 5 Bits pro Symbol: $2^5 = 32$ Möglichkeiten

а	b	 Z				!	?	&
00000	00001	11001	11010	11011	11100	11101	11110	11111

Fragen?

- Sind 4 Bits pro Symbol nicht genug ?
- Müssen wir im Durchschnitt 5 Bits für jedes Vorkommen eines Symbols in langen Texten verwenden?

Beobachtung:

- Nicht jeder Buchstabe kommt gleich häufig vor
- z. B. kommen x, y und z in der deutschen Sprache viel seltener vor als e, n oder r

Idee:

Benutze kurze Bitstrings für Symbole die häufig vorkommen

Effekt:

 Gesamtlänge der Kodierung einer Symbolfolge (eines Textes) wird reduziert

Präfix-Kodierung:

Eine Präfix-Kodierung für ein Alphabet Σ ist eine Funktion γ , die jeden Buchstaben $x \in \Sigma$ auf eine endliche Sequenz von 0 und 1 abbildet, so dass für $x,y \in \Sigma$, $x \neq y$, die Sequenz $\gamma(x)$ kein Präfix der Sequenz $\gamma(y)$ ist.

Beispiel (Präfix-Kodierung):

$x \in \Sigma$		1			4			7	8	9
γ(x)	00	0100	0110	0111	1001	1010	1011	1101	1110	1111

Definition (Frequenz)

• Die Frequenz f[x] eines Buchstaben $x \in \Sigma$ bezeichnet den Bruchteil der Buchstaben im Text, die x sind.

Beispiel:

- $\Sigma = \{0,1,2\}$
- Text = "0010022001" (10 Zeichen)
- f[0] = 3/5
- f[1] = 1/5
- f[2] = 1/5

Definition (Kodierungslänge)

Die Kodierungslänge eines Textes mit n Zeichen bzgl. einer Kodierung γ ist definert als

Kodierungslänge =
$$\sum_{x \in X} n \cdot f[x] \cdot |\gamma(x)|$$

Beispiel:

- $\Sigma = \{a,b,c,d\}$
- $\gamma(a) = 0$; $\gamma(b) = 101$; $\gamma(c) = 110$; $\gamma(d) = 111$
- Text = "aacdaabb"
- Kodierungslänge = 16

Definition (durchschn. Kodierungslänge)

Die durchschnittliche Kodierungslänge eines Buchstabens in einem Text mit n Zeichen und bzgl. einer Kodierung γ ist definiert als

$$ABL(\gamma) = \sum_{x \in \Sigma} f[x] \cdot |\gamma(x)|$$

Beispiel:

Average Bits per Letter

- $\Sigma = \{a,b,c,d\}$
- $\gamma(a) = 0$; $\gamma(b) = 101$; $\gamma(c) = 110$; $\gamma(d) = 111$
- Text = "aacdaabb"
- Durchschnittliche Kodierungslänge = 16/8 = 2

Problem einer optimalen Präfix-Kodierung:

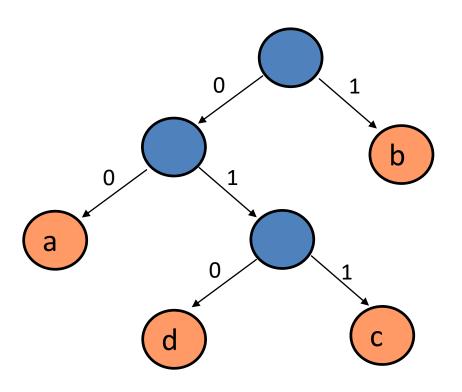
• Eingabe:

Alphabet Σ und für jedes $x \in \Sigma$ seine Frequenz f[x]

Ausgabe:

Eine Präfix-Kodierung γ , die ABL(γ) minimiert

Binärbäume und Präfix-Kodierungen:

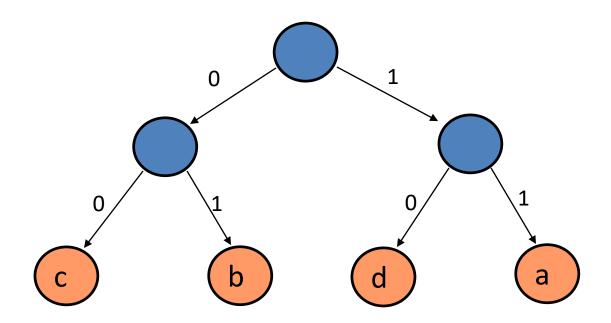


$x \in \Sigma$	$\gamma(x)$
а	00
b	1
С	011
d	010

10

Präfix-Kodierungen und Binärbäume:

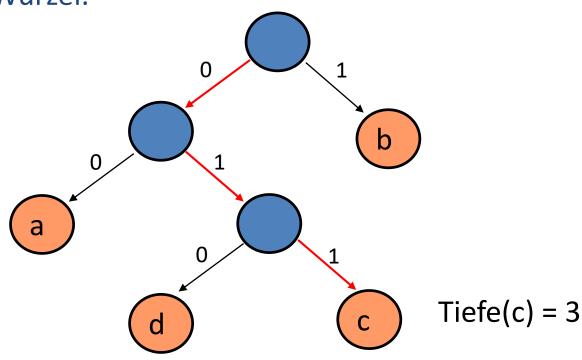
$\mathbf{x} \in \Sigma$	$\gamma(x)$
а	11
b	01
С	00
d	10



__

Definition:

Die Tiefe eines Baumknotens ist die Länge seines Pfades zur Wurzel.



Neue Problemformulierung:

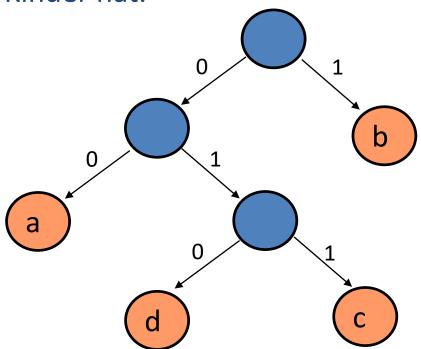
• Suche Binärbaum T, dessen Blätter die Symbole aus Σ sind und der

$$ABL(T) = \sum_{x \in X} f[x] \cdot Tiefe_T(x)$$

minimiert.

Definition:

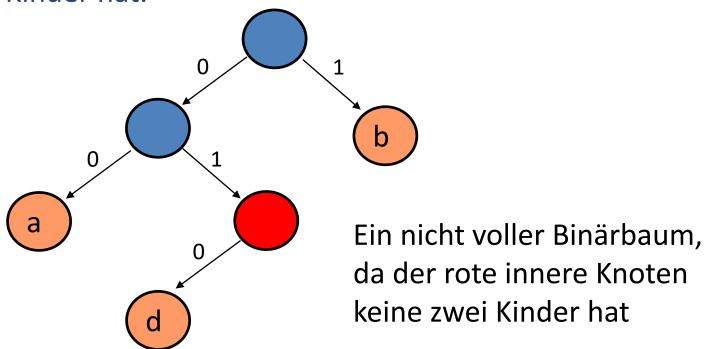
Ein Binärbaum heißt voll, wenn jeder innere Knoten genau zwei Kinder hat.



Ein voller Binärbaum

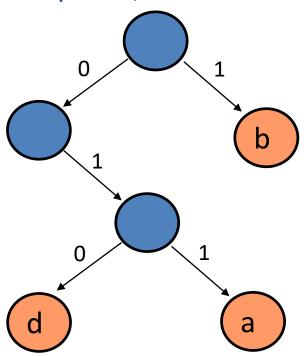
Definition:

Ein Binärbaum heißt voll, wenn jeder innere Knoten genau zwei Kinder hat.



Lemma:

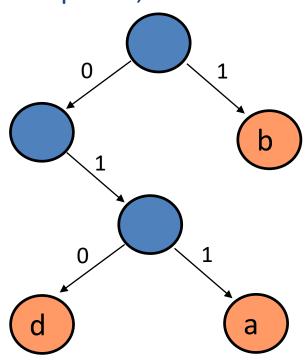
Der Binärbaum, der einer optimalen Präfix-Kodierung entspricht, ist voll.



-=

Lemma:

Der Binärbaum, der einer optimalen Präfix-Kodierung entspricht, ist voll.

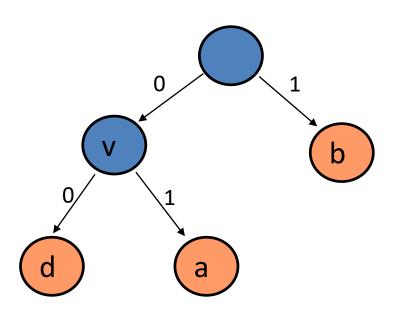


Beweis:

- Annahme: T ist optimal und hat inneren Knoten u mit einem Kind v
- Ersetze u durch v
- Dies verkürzt die Tiefe einiger Knoten, erhöht aber keine Tiefe
- Damit verbessert man die Kodierung

Lemma:

Der Binärbaum, der einer optimalen Präfix-Kodierung entspricht, ist voll.



Beweis:

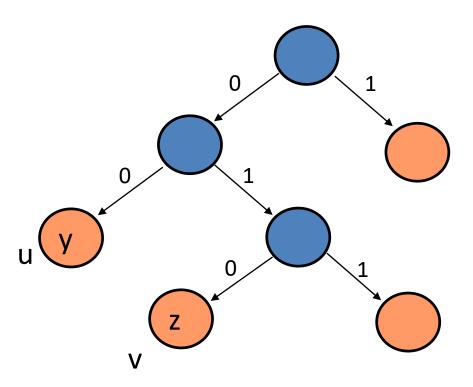
- Annahme: T ist optimal und hat inneren Knoten u mit einem Kind v
- Ersetze u durch v
- Dies verkürzt die Tiefe einiger Knoten, erhöht aber keine Tiefe
- Damit verbessert man die Kodierung

Ein Gedankenexperiment:

- Angenommen, jemand gibt uns den optimalen Baum T*, aber nicht die Bezeichnung der Blätter
- Wie schwierig ist es, die Bezeichnungen zu finden?

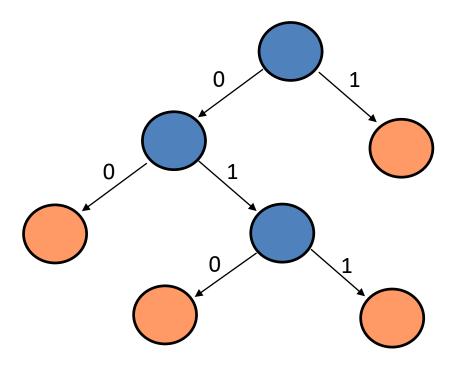
Lemma:

Seien u und v Blätter von T* mit Tiefe(u) < Tiefe(v). Seien u bzw. v in einer optimalen Kodierung mit $y \in \Sigma$ bzw. $z \in \Sigma$ bezeichnet. Dann gilt $f[y] \ge f[z]$.



Lemma:

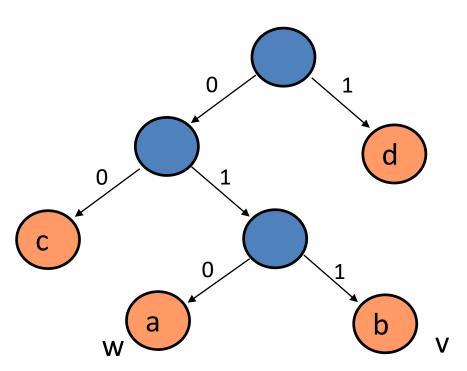
Seien u und v Blätter von T* mit Tiefe(u) < Tiefe(v). Seien u bzw. v in einer optimalen Kodierung mit $y \in \Sigma$ bzw. $z \in \Sigma$ bezeichnet. Dann gilt $f[y] \ge f[z]$.



$x \in \Sigma$	f[x]
а	10%
b	12%
С	18%
d	60%

Beobachtung

Sei v der tiefste Blattknoten in T*. Dann hat v einen Geschwisterknoten und dieser ist ebenfalls ein Blattknoten.

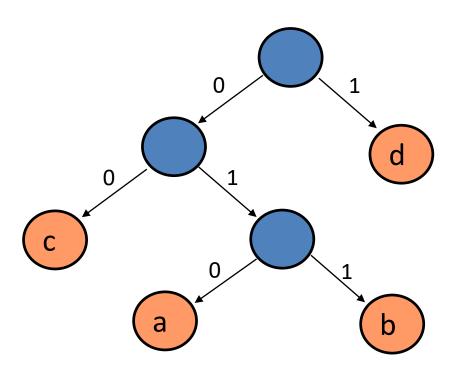


(Geschwisterknoten von v)

UNI FREIBURG

Zusammenfassende Behauptung

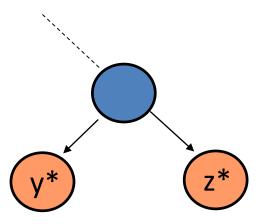
• Es gibt eine optimale Präfix-Kodierung mit zugehörigem Baum T*, so dass die beiden Blattknoten, denen die Symbole mit den kleinsten Frequenzen zugewiesen wurden, Geschwisterknoten in T* sind.



$x \in \Sigma$	f[x]
a	10%
b	12%
С	18%
d	60%

Idee des Algorithmus:

- Die beiden Symbole y* und z* mit den niedrigsten Frequenzen sind Geschwisterknoten
- Fasse y* und z* zu einem neuen Symbol zusammen
- Löse das Problem für die übrigen n-1 Symbole (z.B. rekursiv)



$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

$Huffman(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
a	23%
b	12%
С	55%
d	10%

$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2.
$$Q \leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

Q:

12%

$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

4.
$$x \leftarrow deleteMin(Q)$$

- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$

7.
$$f[z] \leftarrow f[x] + f[y]$$

- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

i=1

12%

55%

SIIDG

29

$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

4.
$$x \leftarrow deleteMin(Q)$$

- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$

7.
$$f[z] \leftarrow f[x] + f[y]$$

- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

Q: (1

i=1

x: (10%

BURG

$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

4.
$$x \leftarrow deleteMin(Q)$$

5.
$$y \leftarrow deleteMin(Q)$$

6.
$$z \leftarrow new BinTree(x, f[x]+f[y],y)$$

7.
$$f[z] \leftarrow f[x] + f[y]$$

8.
$$Q \leftarrow Q \cup \{z\}$$

9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

79110

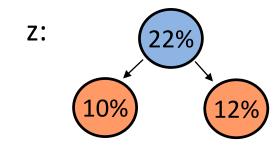
$Huffman(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$\mathbf{x} \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



SIIDC

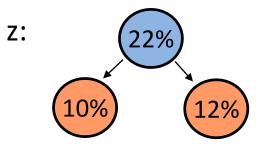
$Huffman(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new$ BinTree(x, f[x]+f[y],y)
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$\mathbf{x} \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



33

$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

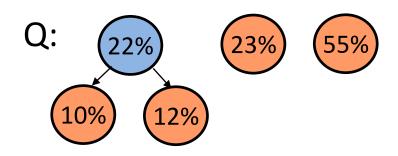
4.
$$x \leftarrow deleteMin(Q)$$

- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$

7.
$$f[z] \leftarrow f[x] + f[y]$$

- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

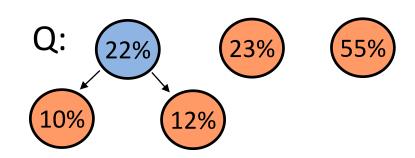
4.
$$x \leftarrow deleteMin(Q)$$

- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$

7.
$$f[z] \leftarrow f[x] + f[y]$$

- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



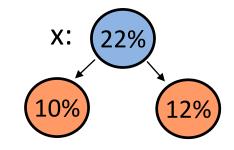
$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

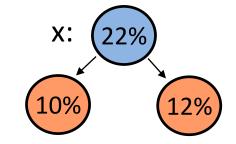
4.
$$x \leftarrow deleteMin(Q)$$

- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$

7.
$$f[z] \leftarrow f[x] + f[y]$$

- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
р	12%
С	55%
d	10%



SIIDC

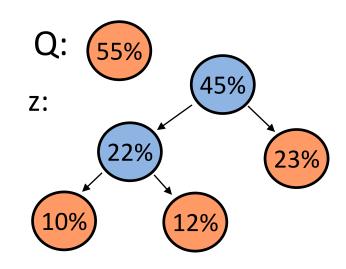
$Huffman(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

x ∈Σ	f[x]
а	23%
b	12%
С	55%
d	10%



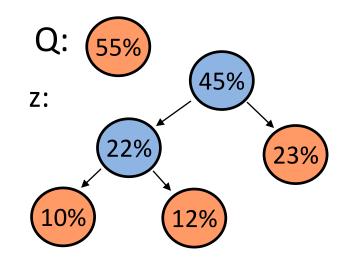
$Huffman(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

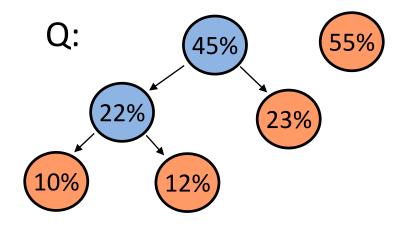
2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

4.
$$x \leftarrow deleteMin(Q)$$

- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$\mathbf{x} \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



$Huffman(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

3. **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

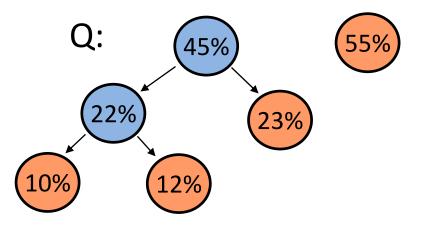
4.
$$x \leftarrow deleteMin(Q)$$

- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$

7.
$$f[z] \leftarrow f[x] + f[y]$$

- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



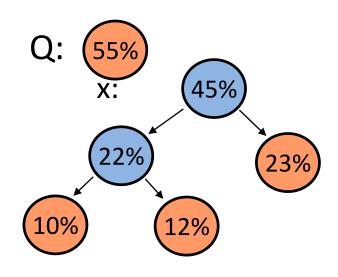
$\mathsf{Huffman}(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

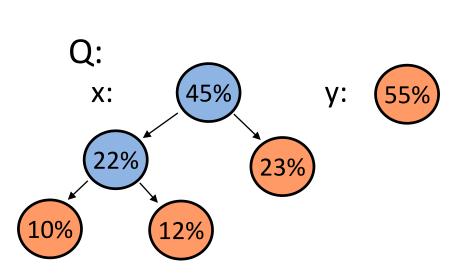


1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$\mathbf{x} \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

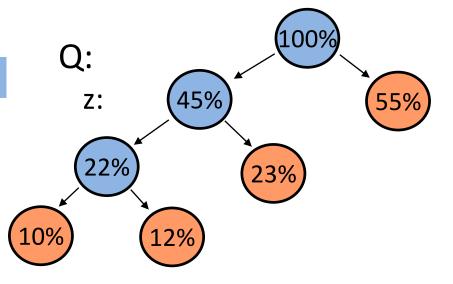


1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

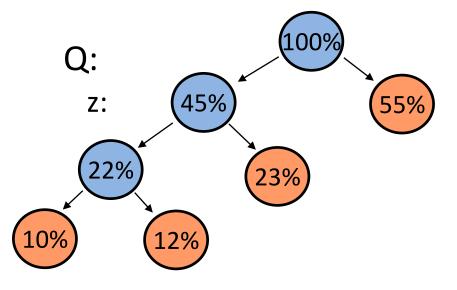


1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%



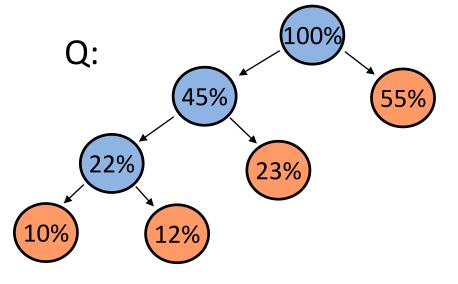
SIIDC

$Huffman(\Sigma)$

1. n
$$\leftarrow$$
 | Σ |

- 2. Q $\leftarrow \Sigma$ /* Priority Queue bzgl. f[x] */
- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$x \in \Sigma$	f[x]
а	23%
b	12%
С	55%
d	10%

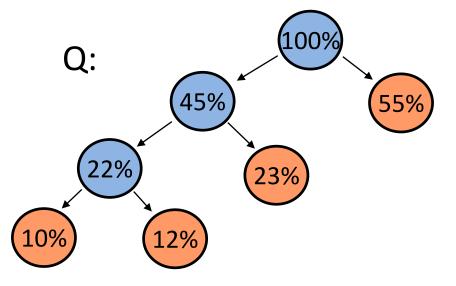


1. n
$$\leftarrow$$
 | Σ |

2. Q
$$\leftarrow \Sigma$$
 /* Priority Queue bzgl. f[x] */

- 3. **for** $i \leftarrow 1$ **to** n-1 **do**
- 4. $x \leftarrow deleteMin(Q)$
- 5. $y \leftarrow deleteMin(Q)$
- 6. $z \leftarrow new BinTree(x, f[x]+f[y],y)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- 8. $Q \leftarrow Q \cup \{z\}$
- 9. return deleteMin(Q)

$\mathbf{x} \in \Sigma$	f[x]
a	23%
b	12%
С	55%
d	10%



Greedy Algorithmen – Datenkompression

Theorem

Der Huffman(Σ)-Alg. berechnet eine optimale Präfix-Kodierung.

Greedy Algorithmen – Datenkompression

Theorem

Der Huffman(Σ)-Alg. berechnet eine optimale Präfix-Kodierung.

Optimale durchschn. Codewortlänge

- Was ist die durchschnittliche Codewortlänge der Huffman-Codierung?
- Zur Einfachheit nehmen wir an, dass alle Frequenzen (rel. Häufigkeiten) von der Form $1/2^k$ sind

Optimale durchschn. Codewortlänge

UNI FREIBURG

Beobachtung: Falls alle Frequenzen von der Form $1/2^k$ sind und $1/2^{k_{\min}}$ die kleinste Frequenz ist, dann hat es mindestens zwei Zeichen mit Frequenz $1/2^{k_{\min}}$.

Optimale durchschn. Codewortlänge

EIBURG

Lemma: Falls alle Frequenzen von der Form $1/2^k$ sind, dann hat ein Zeichen mit Frequenz $1/2^k$ ein Codewort der Länge genau k.

Durchschnittliche Codewortlänge eines Huffman-Codes

• Annahme: Alle Frequenzen von der Form $1/2^k$

Entropie

Häufigkeitsverteilung / Wahrscheinlichkeitsvert. p(x)

• Elemente X, Element $x \in X$ hat Frequenz p(x)

Entropie H(X)

$$H(X) := -\sum_{x \in X} p(x) \log_2 p(x)$$

- Untere Schranke für die optimale durchschn. Codewortlänge
- Im Grenzwert (genug lange Zeichenketten) kann man mit durschn. Codewortlänge H(X) codieren

• Idee:

- Für genug grosses (konstantes) k, bestimme Codewort für jedes k-Tupel von Zeichen aus X
- Verwende Huffman-Codierung

The End ©

Fabian Kuhn Informatik II, SS 2018 54