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Approximation Algorithms

FREIBURG

An approximation algorithm is an algorithm that computes a solution for
an optimization problem with an objective value that is provably within a
bounded factor of the optimal objective value.

Formally:

* OPT = 0 : optimal objective value
ALG = 0 : objective value achieved by the algorithm

——

—

* Approximation Ratio «:

Minimizati ALG
INimization: o ‘= max — 2
input instances OPT )
. . ALG
Maximization: a := min — < |

input instances QPT
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Set Cover
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Input: A set of elements E and a collection S of subsets E, i.e., § € 2F

e suchthatUgesS =E, |E| =n |
. _ — (E/ S) sed Sgsl(m
* Maximum set size A := max |S]|
= S€§
* Maximum element frequency f = max|{S € § : e € S}
= eeE

Set Cover: A set cover C of (E,S) is a subset of the sets § which covers E':

Example:
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Minimum (Weighted) Set Cover
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Minimum Set Cover:
* Goal: Find a set cover C of smallest possible size

— i.e.Cover E with as few sets as possible

Minimum Weighted Set Cover:
 EachsetS € S hasaweight w(S) >0
* Goal: Find a set cover C of minimum weight

Example:
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Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

e StartwithC =0
* Ineachstep,addsetS € § \ C to C s.t. S covers as many uncovered

elements as possible

Example:
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Weighted Set Cover: Greedy Algorithm :
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Greedy Weighted Set Cover Algorithm:

e StartwithC =0 IS\ U TI "-Huw(;? covered
Tel’
* Price-per-elementratioof S €S\ C: elom. o liean
w(S) G//i‘ut S
ppe(S) =
S\ UreeT]

* Ineach step,addsetS € § \ C with minimum ppe(S)

Analysis of Greedy Algorithm:

* Assign a price(e) to each element e € E':
(price-per-element when covering the element)

* If covering e with set S and partial cover is C before adding S:

T———

price(e) = ppe(S)

Vroem-\xog i era (@) :-ZW(S)
@' covertd SGC
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider aset S = {eq, €5, ..., €x} € § and assume that the
elements are covered in the order eq, e, ..., € by the greedy algorithm
(ties broken arbitrarily).

Then, the price of element e; is at most price(e;) < kM:(iS-;-)l
N S
- a/\od
é X Z k'(l\-l)
=L i+l elowm.
PrelS) s 2L
\AV\CO\)Md . .JL‘ k‘l*’! S
Covered QQQM{ cover Q; bvo S w st)s WQ( )
- . w(S)
Cowy L5 prce(Q;) € —
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Weighted Set Cover: Greedy Algorithm
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Lemma: Consider aset S = {eq, €5, ..., €x} € § and assume that the
elements are covered in the order eq, e, ..., € by the greedy algorithm
(ties broken arbitrarily).

w(S)

k—i+1

Then, the price of element e; is at most price(e;) <

—_—

Corollary: The total price of aset S € § of size |[S| = k is
k

1
2 price(e) < w(S) - Hk, where H; = ZT <1+Ink

eES - =1

($)
i@n&‘@) ana&‘) < Z W) Z‘d Q}(S’) 'H’( S W(S) '\'(

+ .
ecs o b i =1
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Weighted Set Cover: Greedy Algorithm
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Corollary: The total price of aset S € § of size |S| = k is

k
1
zp(e) <w(S):Hg, , where Hy =Z—,s 1+1nk

: l

Theorem: The approximation ratio of the greedy minimum (weighted) set
cover algorithmis at most Hy < 1 4+ In A, where s is the cardinality of the

largest set (A = max [S]). -
g ( na; 1S])

C:?mda 204 cones C*: e‘x]r et Coves

w(C) =2 pree) < S Sl g S W($7-H,_\ = W(C")-H,_\

ece f Se(teesS Eé@" B
Ct S a scL ot
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Set Cover Greedy Algorithm
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Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the
approximation ratio of the greedy algorithm is > (1 — 0(1)) - In A.

e if Aisthe size of the largest set... (A can be linear in n)

Let’s show that the approximation ratio is at least Q(logn)...

...OO0.0.QO..O...O....OOOO0.0.QQ]

...Q.O...O.......Q.Q......O.....]

OPT = 2
GREEDY > log; n
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Set Cover: Better Algorithm?
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An approximation ratio of In n seems not spectacular...
Can we improve the approximation ratio?

No: In a series of work, Lund and Yannakakis (1994), Feige (1998), and
Moshkovitz (2015) showed that it is NP-hard to approximate minimum set
cover by a factor (1 — ¢) - Inn for any constant € > 0.

* Proofis based on the so-called PCP theorem

— PCP theorem is one of the main (relatively) recent advancements in theoretical
computer science and the major tool to prove approximation hardness lower
bounds

— Shows that every language in NP has certificates of polynomial length that can be
checked by a randomized algorithm by only querying a constant number of bits (for
any constant error probability)
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Special Case: Small f ;
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Formulation as Minimum Hypergraph Vertex Cover

* Hypergraph H = (V,E), E € 2" are the hyperedges

\/@mu& ,X 11
%@A \Amrh,??w’&z S13e
2/_‘0/
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Special Case: Small f ;
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Sets

Elements

Formulation as Minimum Hypergraph Vertex Cover
* Hypergraph H = (V,E), E € 21 are the hyperedges

* Vertexcover:SgVstVeeE:SNne=@
— equivalent to set cover (V: sets, E: elements)

—_—

— Max. frequency f = max. hyperedge size = rank of H
— Simple graphs: f = 2

<o
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Vertex Cover vs Matching
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Matching of a hypergraph H = (V, E)
 Adisjoint set of edges M C FE

T——

Lemma: Given a hypergraph H = (V, E), for every matching M € E and
every vertex cover S € V, we have |[M| < [S].

Proof:
* Sisavertexcover=> Ve e M,3dv, €EeNnS

* M is amatching = v, # v,, fore; # e, (e; & e; are disjoint)
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Matching Approximation of Vertex Cover

UNI
f

FREIBURG

Vertex Cover Approximation Algorithm
 LetH = (V,E) be a hypergraph of rank < f
 Compute a maximal matching M of H

 Define vertex cover S as S := U ¢y €
_—
Theorem: The above algorithm computes an f-approximation of the

(unweighted) minimum vertex cover problem in H.

Proof: z

* M maximal = S is a vertex cover
— VY{v4,...,v} € E, at least one of vertices vy, ..., U} is matched (ﬂ{
(

 We have |S| = Y.eylel < f - [M]and | M| < |S7|

PR o
= [S| < f-[57]
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Linear Programming-Based Formulation
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Linear Program (LP)

* (Continuous) optimization of a linear objective function subject to linear

constraints C, X)
. C= (c) = (;,.)
minc' x " "
s.t. Ax>b c'x= 2¢.x,

/xZO i
Avzb LJL Bas'S

| T\AU a.x + ...+ 0(‘)(7/[9'
twu*, o\AS

om v - WL

Advanced Algorithms, SS 2019 Fabian Kuhn 16



LP Duality
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 Every LP has a dual LP

Linear Program Dual Linear Program
min ¢’ x max b’y
s.t. Ax > b o] s.t. ATy <c
x>0 <« 7 = y=0
. m (-b)
TV § (‘C)|)( Xwa‘ . (__ ‘6
\ T (’AI)'G ?-¢
(-A") xS -b
Vd 20
Xz O
 Weak duality: For feasible solutions x and y : b’y < ¢''x
=
— "Ax <
¥y = 7b A < = G X

e Strong duality: For optimal solutions x* and y* : b y* = ¢'x*
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LP-Based Approximation Algorithms
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Important Technique to Design Approximation Algorithms

* LPs can be solved optimally in polynomial time
— Using interior-point methods [Khachiyan 79], [Karmarkar '84]

 Many combinatorial optimization problems can be phrased as an
integer linear program (ILPs):
-———/—\__.
— LP with additional constraint that variables have to take integer values

S—

Basic idea of many approximation algorithms:
1. Formulate given problem as an ILP «—
2. Relax integer constraintsto getan LP ___

. known as the LP relaxation of the given ILP =—

3. Solve the LP

4. Convert (fractional) LP solution to an integer solution
-

e typically the hard part ...

Advanced Algorithms, SS 2019 Fabian Kuhn
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Minimum Set Cover as an ILP
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Given: set system (E,S) and weight w(S) > O forall S

wid do Lolening dos aody S €§, waed do dolowine
duds S e

iy xg €015 = %=1 < seC
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Fractional Set Cover x. < Lo, I]
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* LP relaxation gives variables x¢ = 0 foreach S € §, s.t.

}_9,(_? Ve € E: z xs =1
q&IL S:eeS

and s.t. Y es Xs - W(S) < w(C*), where C* is an optimal set cover.

 How can we turn this fractional solution into an integer one?

— i.e., we need to round the fractional values x5 € [0,1] to X5 € {0,1}

* First consider the setting with bounded element fr=e=quencyf

g‘" ey oct - 3S:eeS

st st%—
il xzY
___3 “ s7 /¢ Qf—cks
0 sHarse
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Fractional Set Cover ] S«6) %)= 2w
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* LPrelax ;ion gives variables x¢ = 0 foreach S € §, s.t.

e VeEE:szzl TE[)?;):)(S
%

S:e€eS
and s.t. Yges Xs - W(S) < w(C*), where C* is an optimal set cover.

 How can we turn this fractional solution into an integer one?
. . X
— i.e., we need to round the fractional values x5 € [0,1] to X5 € {0,1} l+x < é-

Xg — )/(‘ Q{OIE

X$4XS»__J:X 7/’
' S
l - \&lﬂ use Vauo(t)m‘%qé&a»\ wse )(s Qas q ‘,,DL

A L«ml"'\ ?n‘a Xe
e Xs={ o "% Tu i
(ﬁe(mu lev\o{‘ co»w{)— | | S(“X5)<
Stee
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Set Cover: Randomized Rounding
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Set Cover Rounding Algorithm:

1. Setps :=min{l, x5 InA}

2. Add-éach set S to set cover C with probability ps (independently) €—
3. Foreache € E: If eis not covered, add min—weight setcont.e a—

—

Theorem: Given an optimal fractional weighted set cover solution, the set

cover rounding algorithm computes a set cover C of expected weight
Elw(€)] < w(C) - (1+1nA)

Proof:

T oI I
VAR N we)‘/t" w mvowon S Y =
()= Swe0< Lo S lS) < £ -o(C)

W&

é‘h ?w(; (\(«A Q uu(MMJ “(IU de? 2
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Set Cover: Randomized Rounding

Theorem: Given an optimal fractional weighted set cover solution, the set

cover rounding algorithm computes a set cover C of expected weight
Elw(@)] <w(€*)-(1+1InA)

Proof: We already know that

1

E[X] <w(C*)-InA and VeEEzquZ
— -2Ps LA —~
Qe = | CI-p5) S € NS =
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Set Cover Dual LP Sne s Sud)xs s w(C”)

/
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Linear Program r Dual Linear Program
min ¢’ x max b’y
s.t. Ax = b) s.t. ATy <c
x=0 y=0
s iW(S)'Xs WMax > e
S ee
_ { — '
VeeZ © S %20 VSt S ne < wl(S)
—5eeS ereeS
Xe 20 ‘AQZO
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Set Cover Dual LP
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Linear Program
min ¢’ x
s.t. Ax = b
x=0

Advanced Algorithms, SS 2019
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max b’y

s.t. ATy <c
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Set Cover: Randomized Rounding
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Theorem: Given an optimal fractional weighted set cover solution, the set
cover rounding algorithm computes a set cover C of expected weight

Elw(@)] <w(€*)-(1+1InA)
Proof:
* |t remains to show that

m1n W(S) < w(C")
eEEé —_—

‘Qa
B l w ‘ . - < W
\/5: i\éeéW/S) , 2&2 (S) = ; 193] -w (< w(S)

ee€s
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Approximating Weighted Vertex Cover
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Recall maximal matching approximation for the unweighted case

* Vertex cover S = all matched vertices of a maximal matching M

e Sisavertex cover because of the maximality of M

* Edgesin M need to be covered by different nodes in S* =>|£| < |S7|

———N

Generalization to Weighted Vertex Cover?
* The same algorithm does obviously not work
e Different view of above algorithm:

Maximal matching M is a maximal feasible solution of the dual LP
dual set covr | P- Vaskex cove

cloweamds Qoq%}l5 ] oA
Ve_e(:;.' (QQ'&O &m( So(u 039')“.5 uae'?, O do @4t %

JsS - 2 %o S w($) —-\/(‘g
ee> = Sue s\
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Approximating Weighted Vertex Cover
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Theorem: Let y = {y, = 0 : e € E'} be a maximal feasible solution of the
dual weighted (hypergraph) vertex cover LP. Define the vertex set S as
S={veV:YeveeYe =w(®)}. Then, S is a vertex cover of weight

w(S) < f-w(SY).

Let’s start with an example with f = 2:

Advanced Algorithms, SS 2019 Fabian Kuhn 28



Approximating Weighted Vertex Cover
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Theorem: Let y = {y, = 0 : e € E'} be a maximal feasible solution of the
dual weighted (hypergraph) vertex cover LP. Define the vertex set S as

S={veV:Y.peceVe =wW(W)}. Then, S is a vertex cover of weight
ere — 7

w(S) < f-w(S%).

Proof:

o Sis a veslex cores /

 dobl wad of S
W9)= iw(\v) E_ Z‘Qe

veS veS Qwee
b\otﬁs (v

Syl
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