UNI

"
Chapter 9

Fast Approximate Max Flow
in Undirected Graphs

Advanced Algorithms
SS 2019

Fabian Kuhn

FREIBURG

Cut Sparsifiers

UNI
FREIBURG

Last week: cut sparsifiers by [Benczur, Karger; ‘02]

Given: graph G = (VV, E) = weighted graph H = (V,E’,w) with E' € E

e Such that all cuts are preserved up to a (1 + ¢)-factor & |E'| = O (" log n)

&E

e Can be computed in time 0(m)
e Also works for weighted graphs

Gives an immediate algorithms to approximate cut problems:

* First, compute a cut sparsifier, then solve the problem on the sparsifier

e Qutputs an almost optimal cut on G, faster if running time depends onm
» Example: (1 + £)-approximate minimum s-t cut in time 0(n3/2 /&%)

— inundirected graphs...

What about the max flow problem?

* We can approximate the value of the maximum flow, but it is not clear how to
construct a flow (the sparsifier does not contain most of the edges of)

Distributed Systems, SS 2019 Fabian Kuhn 2

Max Flow with Cut Sparsifiers 2

Benczur and Karger give a way to use their cut sparsifier also for the
undirected max flow problem

The main ideas are:

Replace “important” edges in G by multiple parallel edges (capacity is divided
evenly among the multiple edges replacing an original edge)

“important” = small edge strength (strong edge connectivity k,)
— Small edge strength = large sampling probability in sparsifier algorithm

This can be done such that the number of edges only grows by a constant
factor and every edge e has sampling probability O(n/m) in the sparsifier alg.

One can then randomly partition the graph into O (m/n) parts
— All cuts are close to their expected size (same analysis as sparsifier analysis)

We can then solve independent max flow problems in all the O(n/m) parts
and add the flows to get an (1 — &)-approximate max flow for G

Allows to turn an existing 0(m3/2) into an 0 (m+/n/¢) approximate alg.

Today: Main ideas of a faster (more involved) way of solving max flow

Distributed Systems, SS 2019 Fabian Kuhn 3

A slightly more general Problem

UNI

FREIBURG

Given:
* Undirected graph G = (V, E, ¢) with edge capacities c, > 0
* Everynodev € V hasademand b, € Rs.t.), ,cy b, =0

Goal: Find a flow f such that
Vv €V : fou: (V) — fin(v) z‘lz_v

L |fel
minimize max—m—
e€E C, b_ C@M},éﬁ‘ <

How to solve max s-t flow:

1. Seth;=1b,=—-1,b,=0forv ¢ {s,t}
2. Solve the above problem
3. Scale flow s.t. maxﬂ =1

eeE Ce

Distributed Systems, SS 2019 Fabian Kuhn

Matrix Representation of Max Flow

UNI
I

FREIBURG

* Each edge {u, v} added either as (u, v) or as (v, u), flow f, on edge e = (u, v):
— fe>0:flowfromutov, f,<O0:flowfromvtou

 B:node-edge incidence matrix (B is an nXm matrix)
— Edgee = (w,v):By, =+1,B,, =—1,B,,, = 0forw & {u, v}

EXGM(D[U. l 2 2, ¢ <
' /-1 0 g 0+l
S 3 2141 v 9 + 0O

2
B s B = 210 -1 -t O -
0T 1\o 0 w _ p

Valid flow: fisvalid < Bf = b

@D, =S8+ 54, 24,

=) (W,V)

Distributed Systems, SS 2019 Fabian Kuhn 5

Matrix Representation of Max Flow

UNI
I

FREIBURG

 B:node-edge incidence matrix (B is an nXm matrix)
— Edgee=(w,v):By, =+1,B,, =—1,B,,, = 0forw & {u, v}

Valid flow: fisvalid & Bf = b

Capacity matrix:

Goal: minimize [|[C™ f||l st. Bf = b

_
@@(b)

Distributed Systems, SS 2019 Fabian Kuhn

Dual Problem (Generalization of Min Cut)

UNI

FREIBURG

C

Foreverycut (S,V \ S):
AVANIN

* Capacity of cut cg

* Total amount of flow across cut (S,V \ S) is at least

b = Zb,,

VES

b
opt(b) 2 —
S

—

Max flow min cut theorem:

bs
JcutS : opt(b) = —
Cs

—

Distributed Systems, SS 2019 Fabian Kuhn

UNI
FREIBURG

Dual Problem (Generalization of Min Cut)

Dual problem: maximum congested cut

* \Vertex potentials x € R", x, ER
3
* Goal:

maxb'x s.t. |[CBTx|; <1

———

—

« Example: consider a cut (S,V \ S):
Vector xs is characteristic vectorofset S (x, = 1 © v €)

bx = Z.bv =bs

- veS
T = Co(Xy—X) \\ C¥xll = fce\x“-x,I = Cs
<MCB>:)’3 o es) - € —
M (C >u(---“)[)" =-<.) a“@ ;Cq{,}..‘\ g,g\», “ C(‘érxnl-' ‘
)(‘ A Vé—g
v CS
o'x =2

Distributed Systems, SS 2019 Fabian Kuhn

Dual Problem (Generalization of Min Cut)

UNI
FREIBURG

Goal: vertex potentials x,, € R: J
maxb'x s.t. ||[CBTx|; <1

Claim: Opt. solution of above problem has value opt(b).
— We have seen that there exists x with b"x = opt(b)

=
T _ _ b)) 2 2
b\x - %K,-Ly ‘e%ie(xu Xv) 6? 2 |\CBT7‘"l gezc %
- 2 Se’ C, (X, -~ Xy)
2=(u,v)
= S (CT) s Il B, (&)
b x
== ¢l 2 —=
00 \\C‘lel,

Distributed Systems, SS 2019 Fabian Kuhn 9

Congestion Approximator

UNI

FREIBURG

A method that allows to get a good approximation of opt(b)
/

Definition: a-congestion approximator is a matrix R € Rf*" s.t.
Vb € R™: ||Rb||, < opt(b) < a - ||RD||»

—_——

Example 1:
* One row for each possible cut (S5,V \ S):

RS,v -
Cs

(@b), =S &b - %5 < apht)

vES S

Mox g(m—'m‘«-\—eu} ‘HAw\ —> a N CRMS:"’VHL)

-—/’%WQ?/\[XR= |

Distributed Systems, SS 2019 Fabian Kuhn

10

! Fw ve S QS,V':O (P\rql S

Congestion Approximator

UNI
I

FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: a-congestion approximator is a matrix R € Rf*" s.t.
Vb € R™: ||Rb||, < opt(b) < a - ||RD||»

Example 2:
e Assume T is a maximum weight spanning tree
 Add one row for each edge e of T, let S, be the induced cut of e:

 Measures exactly the cost of routing the flow on the tree T
* Routing on the tree incurs at mosta factorm = a =m

@ad (@) =D
. \‘M.‘Q) (‘Se\/Ce
ectT
‘
— CQZIA‘CSe

Distributed Systems, SS 2019 Fabian Kuhn 11

Congestion Approximator

UNI

FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: a-congestion approximator is a matrix R € Rf*" s.t.
Vb € R™: ||Rb||, < opt(b) < a - ||RD||»

Example 3:

* Use all the trees of a low-congestion tree embedding
— As considered in the lectures on May 17 and June 7

— When picking a random tree, expected congestion of each edge is at most
O (logn) times the congestion for an optimal solution of an arbitrary
multicommodity flow problem

 Add one row for each tree T and each edge e of T,
let S, be the induced cut of e:

 Givesa = 0(logn)

Distributed Systems, SS 2019 Fabian Kuhn

12

Congestion Approximator

UNI
I

FREIBURG

A method that allows to get a good approximation of opt(b)

Definition: a-congestion approximator is a matrix R € Rf*" s.t.
Vb € R™: ||Rb||, < opt(b) < a - ||RD||»

Example 4:

e (Add one row for each tree T and each edge e of T of a low-congestion tree
embedding, let S, be the induced cut of e

* The construction required O(m) trees = R has O (mn) rows

 Can be improved by first computing a cut sparsifier
— Now, we only need 0(n) trees = R has 0(n?) rows

C——

* In [Sherman; 2013], a recursive Xariant of this is described:
———— ‘-
— Based on a construction of [Maggy; 2010]

— Instead of trees, embed into more complicated structures (needs less of them)

— Gives a congestion approximator R with n1+0() rows that can be computed in

time m - n° and with & = n°W (T)
— — . 2
n
Distributed Systems, SS 2019 Fabian Kuhn 13

An Unconstrained Version of the Problem
— L deasile= BL=b

UNI

FREIBURG

« Assume that an a-congestion approximator R with < n?/2 rows is given

-

Using it, we can turn max flow into an unconstrained optimization problem:

qoin y(f) = 1€ fllo + 22 - [IR(b = Bl

Intuition:
* Optimal solution is an optimal flow f

:(\MGJ. > \6(£) =“ C-l£“
Ajumﬂ W' _‘@ 2‘10‘7" 4/(00‘} %Dﬂ‘ M Nma}u\\ué o@w\awjg

b-8{
2 o@(b-u’) <2« RG-8AI,
¥ 2 | C‘,g“oo + Z'OP‘\UQ ()

Y, 2 opi) —eqiCb-3) 7
« Approximate sg?uiiigpm\‘/\g/(i’ | g\it/tah&a\\rzgs’gyﬁ\%‘ ﬂg\ﬂi 2 (ewwo)

Distributed Systems, SS 2019 Fabian Kuhn

= o(?'\'(b’g'q_)

14

An Unconstrained Version of the Problem

UNI
FREIBURG

« Assume that an a-congestion approximator R with < n?/2 rows is given

Using it, we can turn max flow into an unconstrained optimization problem:

min y(f) = 1€ Il + 2a - IR (b = Bl

—_—

e
Theorem 1:

There is an algorithm AlmostRoute(b,) that returns a flow f for which
y(f) < (1 +¢) - opt(b).

a’-log a-logn

The algorithms requires O (3) iterations that require time O(m) plus a

multiplication by R and by R'. R — -

—\

Distributed Systems, SS 2019 Fabian Kuhn 15

FREIBURG

An Unconstrained Version of the Problem =

UNI

min y(f) = 1€ fll + 2a - IR (b = Bl

Theorem 2: There is an algorithm that computes a valid (1 4+ €)-approximate flow
that applies AlmostRoute O(logn) times.

|>o'-=b/ -(,, = A‘mos-}‘zw‘k(“\), 2) — \G('co)é \+e) 0?4('9)
46(‘k‘-:\ 'H T Q((—)‘ T=‘\-£U§q/skémﬂ \)

bi;,_ bi~| - ’B;(M (Feum. p(nwmw(s)
4: = /‘Hw\ﬁ%&@bf/ \/2'>
\)T'H = bT -%QT

'g‘l‘-u = %(M\) wduced (ﬂ7 (UV\J'\\'*J bTH U way. V\M)({a‘i sg}. Jee2 .
Towd 228 5 (82| Chl, + 2xN R, < (1O opHb)
Yot (4= N +2xl1by, 1< 3ote) s 7 ol Rod

Distributed Systems, SS 2019 Fabian Kuhn 16

An Unconstrained Version of the Problem

UNI
FREIBURG

min y(f) = 1€ Il + 2a - IR (b = Bl

T
Theorem 2: There is an algorithm that computes a valid (1 4+ €)-approximate flow
that applies AlmostRoute O(logn) times.

(4910 ®) 2N CAI, + 241 b,
ACL, +1C L+ 2lRb, 5 + Z1@b

1L ACH + 2l byl 512,
IC0. || < meoptCory) < walRbr, oy T8ty J IR, g= S04
(14€)eptb) 2 E qﬂloz “ C" (Qo L ':(T-H)))oo

Distributed Systems, SS 2019 Fabian Kuhn

17

A Differentiable Objective Function

UNI

FREIBURG

Softmax function (on a vector x € R%):

d
Imax(x) := In (Z (e*i + e_xi)>
i=1

Properties of softmax:
x|l < Imax(x) < ||x]|e + In(2d)

zu.axcx) = Q.,\ QZQDQ') < La (7.0k .Q'm‘co) =l ¥l +@u(2¢‘)

1

IA

|VImax(x)][4

Vimax(x)"x > Imax(x) — In(2d)

IA

[VImax(x) ~gmax(y)ll; < [lx = ylle
-

Distributed Systems, SS 2019 Fabian Kuhn

18

A Differentiable Objective Function

UNI
FREIBURG

Softmax function (on a vector x € R%):

d
Imax(x) := In (Z (e*i + e_xi)>
i=1

Replace
Y(f) =IC" flleo + 2a - [IR(b — Bf) |l oo
By —
¢ (f) = Imax(C1f) + Imax(2a - R(b — Bf—Gp o 4“2)
) < b(f) <58 + bal2m) + G(2-%)
< \6 (,@) + ‘fﬁu(u)

341(2 &4, (w) < E-N)
>l 5 vdinesed %7 4“()‘25 @wglw

Distributed Systems, SS 2019 Fabian Kuhn 19

AlmostRoute(b, €)

UNI

FREIBURG

e Initialize f = 0, scale bso 2a - ||Rb||l, = 16 1Inn

* Repeat:
— While ¢(f) < 167 1Inn, scale fand bup by 17/16

- Set§ = [IC- TPy

— Iféd=>¢/4,setf, = f, — 1+ia2 - sgn ((ng(f))e) ‘Ce

= = — —_—

— Otherwise, terminate and output f after undoing all scalings

Also, output vertex potentials x := RT . Vlmax(Za -R(b — Bf))

Distributed Systems, SS 2019 Fabian Kuhn

20

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b, €) terminates, we have
T

b'x
: (t
_461@5 d(f) < (1+¢) AT < (o) ¥/

Distributed Systems, SS 2019 Fabian Kuhn

21

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b, €) terminates, we have

b x

||CBTx||1

d(f)=(1+¢e)-

Distributed Systems, SS 2019 Fabian Kuhn

22

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b, €) terminates, we have

b x

||CBTx||1

d(f)=(1+¢e)-

Distributed Systems, SS 2019 Fabian Kuhn

23

AlmostRoute(b, €)

UNI

FREIBURG

Lemma: When AlmostRoute(b, €) terminates, we have

b x

||CBTx||1

d(f)=(1+¢e)-

Distributed Systems, SS 2019 Fabian Kuhn

24

UNI

AlmostRoute(b, €)

Lemma: The number of iterations of AlmostRoute(b,) is at most

. (az loga - logn>

c3

e Initialize f = 0, scale b so 2a - ||Rb||s, = 161 Inn

* Repeat: /N
— While ¢(f) < 167 1Inn, scale fandbupby17/16 G w) J9Ml
— set§:=|C- Vp(Nllx b Coboith R

— Ifé6>¢/4,setf, =f, — 1+ia2 - sgn ((qu(f))e) © Ce 4+ A QT

— Otherwise, terminate

Distributed Systems, SS 2019 Fabian Kuhn 25

FREIBURG

AlmostRoute(b, €)

UNI
I

FREIBURG

Lemma: The number of iterations of AlmostRoute(b,) is at most

a? - loga-logn
o(& g).
£

Distributed Systems, SS 2019 Fabian Kuhn

26

