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Cut	Sparsifiers

Last	week:	cut	sparsifiers by	[Benczúr,	Karger;	‘02]

Given:	graph	𝐺 = 𝑉, 𝐸 ⟹ weighted	graph	𝐻 = 𝑉, 𝐸(, 𝑤 with	𝐸( ⊆ 𝐸

• Such	that	all	cuts	are	preserved up	to	a	 1 ± 𝜀 -factor	&	 𝐸( = 𝑂 / 012 /
3

• Can	be	computed	in	time	𝑂4 𝑚
• Also	works	for	weighted	graphs

Gives	an	immediate	algorithms	to	approximate	cut	problems:
• First,	compute	a	cut	sparsifier,	then	solve	the	problem	on	the	sparsifier
• Outputs	an	almost	optimal	cut	on	𝐺,	faster	if	running	time	depends	on	𝑚
• Example:	 1 + 𝜀 -approximate	minimum	𝑠-𝑡 cut	in	time	𝑂4 𝑛: ;⁄ 𝜀:⁄

– in	undirected	graphs…

What	about	the	max	flow	problem?
• We	can	approximate	the	value	of	the	maximum	flow,	but	it	is	not	clear	how	to	

construct	a	flow	(the	sparsifier does	not	contain	most	of	the	edges	of	𝐺)
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Max	Flow	with	Cut	Sparsifiers

• Benczúr	and	Karger give	a	way	to	use	their	cut	sparsifier also	for	the
undirected	max	flow	problem

The	main	ideas	are:
• Replace	“important”	edges	in	𝐺 by	multiple	parallel	edges	(capacity	is	divided	

evenly	among	the	multiple	edges	replacing	an	original	edge)
• “important”	= small	edge	strength	(strong	edge	connectivity	𝑘>)

– Small	edge	strength	⟹ large	sampling	probability	in	sparsifier algorithm
• This	can	be	done	such	that	the	number	of	edges	only	grows	by	a	constant	

factor	and	every	edge	𝑒 has	sampling	probability	𝑂4 𝑛 𝑚⁄ in	the	sparsifier alg.
• One	can	then	randomly	partition	the	graph	into	𝑂4 𝑚 𝑛⁄ parts

– All	cuts	are	close	to	their	expected	size	(same	analysis	as	sparsifier analysis)

• We	can	then	solve	independent	max	flow	problems	in	all	the	𝑂4 𝑛 𝑚⁄ parts	
and	add	the	flows	to	get	an	 1 − 𝜀 -approximate	max	flow	for	𝐺

• Allows	to	turn	an	existing	𝑂 𝑚: ;⁄ into an	𝑂4 𝑚 𝑛� 𝜀⁄ approximate	alg.

• Today:	Main	ideas	of	a	faster	(more	involved)	way	of	solving	max	flow
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A	slightly	more	general	Problem

Given:	
• Undirected	graph	𝐺 = 𝑉, 𝐸, 𝑐 with	edge	capacities	𝑐> > 0
• Every	node	𝑣 ∈ 𝑉 has	a	demand	𝑏H ∈ ℝ s.t. ∑ 𝑏H�

H∈K = 0

Goal:	Find	a	flow	𝑓 such	that
∀𝑣 ∈ 𝑉 ∶ 𝑓OPQ 𝑣 − 𝑓R/ 𝑣 = 𝑏H
	

minimize				 max
>∈[

𝑓>
𝑐>

How	to	solve	max	𝒔-𝒕 flow:
1. Set	𝑏^ = 1,	𝑏Q = −1,	𝑏H = 0 for	𝑣 ∉ 𝑠, 𝑡
2. Solve	the	above	problem

3. Scale	flow	s.t.max
>∈[

à
ba
= 1
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Matrix	Representation	of	Max	Flow

• Each	edge	 𝑢, 𝑣 added	either	as	 𝑢, 𝑣 or	as	 𝑣, 𝑢 ,	flow	𝑓> on	edge	𝑒 = (𝑢, 𝑣):
– 𝑓> > 0 :	flow	from	𝑢 to	𝑣 ,							𝑓> < 0 :	flow	from	𝑣 to	𝑢

• 𝐵:	node-edge	incidence	matrix	(𝐵 is	an	𝑛×𝑚 matrix)
– Edge	𝑒 = 𝑢, 𝑣 :	𝐵P,> = +1,	𝐵H,> = −1,	𝐵i,> = 0 for	𝑤 ∉ 𝑢, 𝑣

Valid	flow:	𝒇 is	valid	⇔ 𝐵𝒇 = 𝒃
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Matrix	Representation	of	Max	Flow

• 𝐵:	node-edge	incidence	matrix	(𝐵 is	an	𝑛×𝑚 matrix)
– Edge	𝑒 = 𝑢, 𝑣 :	𝐵P,> = +1,	𝐵H,> = −1,	𝐵i,> = 0 for	𝑤 ∉ 𝑢, 𝑣

Valid	flow:	𝒇 is	valid	⇔ 𝐵𝒇 = 𝒃

Capacity	matrix:

Goal:	minimize	 𝐶no𝒇 p s.t. 𝐵𝒇 = 𝒃
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Dual	Problem	(Generalization	of	Min	Cut)

For	every	cut	 𝑺, 𝑽 ∖ 𝑺 :

• Capacity	of	cut	𝑐t

• Total	amount	of	flow	across	cut	 𝑆, 𝑉 ∖ 𝑆 is	at	least

𝑏t ≔w𝑏H

�

H∈t

Max	flow	min	cut	theorem:

∃	cut	𝑆 ∶ opt 𝒃 =
𝑏t
𝑐t
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Dual	Problem	(Generalization	of	Min	Cut)

Dual	problem:	maximum	congested	cut
• Vertex	potentials	𝒙 ∈ ℝ/,			𝑥H ∈ ℝ
• Goal:

max𝒃�𝒙 			𝑠. 𝑡. 	 𝐶𝐵�𝒙 o ≤ 1

• Example:	consider	a	cut	 𝑆, 𝑉 ∖ 𝑆 :
Vector	𝒙t is	characteristic	vector	of	set	𝑆 (𝑥H = 1 ⇔ 𝑣 ∈ 𝑆)
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Dual	Problem	(Generalization	of	Min	Cut)

Goal:	vertex	potentials	𝑥H ∈ ℝ:
max𝒃�𝒙 			𝑠. 𝑡. 	 𝐶𝐵�𝒙 o ≤ 1

Claim:	Opt.	solution	of	above	problem	has	value	opt 𝒃 .
– We	have	seen	that	there	exists	𝒙 with	𝒃�𝒙 = opt 𝒃
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Congestion	Approximator

A	method	that	allows	to	get	a	good	approximation	of	opt 𝒃

Definition:	𝛼-congestion	approximator is	a	matrix	𝑅 ⊆ ℝℓ×/ s.t.
∀𝒃 ∈ ℝ𝒏:		 𝑅𝒃 p ≤ opt 𝒃 ≤ 𝛼 ⋅ 𝑅𝒃 p

Example	1:
• One	row	for	each	possible	cut	(𝑆, 𝑉 ∖ 𝑆):

𝑅t,H =
1
𝑐t
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Congestion	Approximator

A	method	that	allows	to	get	a	good	approximation	of	opt 𝒃

Definition:	𝛼-congestion	approximator is	a	matrix	𝑅 ⊆ ℝℓ×/ s.t.
∀𝒃 ∈ ℝ𝒏:		 𝑅𝒃 p ≤ opt 𝒃 ≤ 𝛼 ⋅ 𝑅𝒃 p

Example	2:
• Assume	𝑇 is	a	maximum	weight	spanning	tree
• Add	one	row	for	each	edge	𝑒 of	𝑇,	let	𝑆> be	the	induced	cut	of	𝑒:

𝑅>,H =
𝑏H
𝑐ta

• Measures	exactly	the	cost	of	routing	the	flow	on	the	tree	𝑇
• Routing	on	the	tree	incurs	at	most	a	factor	𝑚⟹𝛼 = 𝑚
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Congestion	Approximator

A	method	that	allows	to	get	a	good	approximation	of	opt 𝒃

Definition:	𝛼-congestion	approximator is	a	matrix	𝑅 ⊆ ℝℓ×/ s.t.
∀𝒃 ∈ ℝ𝒏:		 𝑅𝒃 p ≤ opt 𝒃 ≤ 𝛼 ⋅ 𝑅𝒃 p

Example	3:
• Use	all	the	trees	of	a	low-congestion	tree	embedding

– As	considered	in	the	lectures	on	May	17	and	June	7
– When	picking	a	random	tree,	expected	congestion	of	each	edge	is	at	most	
𝑂 log 𝑛 times	the	congestion	for	an	optimal	solution	of	an	arbitrary	
multicommodity flow	problem

• Add	one	row	for	each	tree	𝑇 and	each	edge	𝑒 of	𝑇,
let	𝑆> be	the	induced	cut	of	𝑒:

𝑅>,H =
𝑏H
𝑐ta

• Gives	𝛼 = 𝑂 log 𝑛
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Congestion	Approximator

A	method	that	allows	to	get	a	good	approximation	of	opt 𝒃

Definition:	𝛼-congestion	approximator is	a	matrix	𝑅 ⊆ ℝℓ×/ s.t.
∀𝒃 ∈ ℝ𝒏:		 𝑅𝒃 p ≤ opt 𝒃 ≤ 𝛼 ⋅ 𝑅𝒃 p

Example	4:
• Add	one	row	for	each	tree	𝑇 and	each	edge	𝑒 of	𝑇 of	a	low-congestion	tree	

embedding, let	𝑆> be	the	induced	cut	of	𝑒
• The	construction	required	𝑂4 𝑚 trees	⟹𝑅 has	𝑂4 𝑚𝑛 rows
• Can	be	improved	by	first	computing	a	cut	sparsifier

– Now,	we	only	need	𝑂4(𝑛) trees	⟹𝑅 has	𝑂4 𝑛; rows
• In	[Sherman;	2013],	a	recursive	variant	of	this	is	described:

– Based	on	a	construction	of	[Mardy;	2010]
– Instead	of	trees,	embed	into	more	complicated	structures	(needs	less	of	them)
– Gives	a	congestion	approximator 𝑅 with	𝑛o�O o rows	that	can	be	computed	in	

time	𝑚 ⋅ 𝑛O o and	with	𝛼 = 𝑛O o
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An	Unconstrained	Version	of	the	Problem

• Assume	that	an	𝛼-congestion	approximator 𝑅 with	≤ 𝑛; 2⁄ rows	is	given

Using	it,	we	can	turn	max	flow	into	an	unconstrained	optimization	problem:

min
�01�	𝒇

𝛾 𝒇 ≔ 𝐶no𝒇 p + 2𝛼 ⋅ 𝑅 𝒃 − 𝐵𝒇 p

Intuition:
• Optimal	solution	is	an	optimal	flow	𝒇

• Approximate	solution	will	give	an	almost	valid	flow	𝒇
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An	Unconstrained	Version	of	the	Problem

• Assume	that	an	𝛼-congestion	approximator 𝑅 with	≤ 𝑛; 2⁄ rows	is	given

Using	it,	we	can	turn	max	flow	into	an	unconstrained	optimization	problem:

min
�01�	𝒇

𝛾 𝒇 ≔ 𝐶no𝒇 p + 2𝛼 ⋅ 𝑅 𝒃 − 𝐵𝒇 p

Theorem	1:
There	is	an	algorithm	AlmostRoute 𝒃, 𝜀 that	returns	a	flow	𝑓 for	which

𝛾 𝒇 ≤ 1 + 𝜀 ⋅ opt 𝒃 .

The	algorithms	requires	𝑂 ��⋅012 �⋅012 /
3�

iterations	that	require	time	𝑂4 𝑚 plus	a	
multiplication	by	𝑅 and	by	𝑅�.
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An	Unconstrained	Version	of	the	Problem

min
�01�	𝒇

𝛾 𝒇 ≔ 𝐶no𝒇 p + 2𝛼 ⋅ 𝑅 𝒃 − 𝐵𝒇 p

Theorem	2:	There	is	an	algorithm	that	computes	a	valid	 1 + 𝜀 -approximate	flow	
that	applies	AlmostRoute 𝑂 log 𝑛 times.
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An	Unconstrained	Version	of	the	Problem

min
�01�	𝒇

𝛾 𝒇 ≔ 𝐶no𝒇 p + 2𝛼 ⋅ 𝑅 𝒃 − 𝐵𝒇 p

Theorem	2:	There	is	an	algorithm	that	computes	a	valid	 1 + 𝜀 -approximate	flow	
that	applies	AlmostRoute 𝑂 log 𝑛 times.
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A	Differentiable	Objective	Function

Softmax	function	(on	a	vector	𝒙 ∈ ℝ�):

lmax 𝒙 ≔ ln w 𝑒�� + 𝑒n��
�

R�o

Properties	of	softmax:
𝒙 p ≤ lmax 𝒙 ≤ 𝒙 p + ln 2𝑑

𝛻lmax 𝒙 o 		≤ 		1																		

															𝛻lmax 𝒙 �𝒙		 ≥ 		lmax 𝒙 − ln 2𝑑

𝛻lmax 𝒙 − lmax 𝒚 o 	≤ 		 𝒙 − 𝒚 p																							
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A	Differentiable	Objective	Function

Softmax	function	(on	a	vector	𝒙 ∈ ℝ�):

lmax 𝒙 ≔ ln w 𝑒�� + 𝑒n��
�

R�o
Replace

𝛾 𝒇 ≔ 𝐶no𝒇 p + 2𝛼 ⋅ 𝑅 𝒃 − 𝐵𝒇 p

By
𝜙 𝒇 ≔ lmax 𝐶no𝒇 + lmax 2𝛼 ⋅ 𝑅 𝒃 − 𝐵𝒇
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AlmostRoute 𝒃, 𝜀

• Initialize	𝒇 = 0,	scale	𝒃 so	2𝛼 ⋅ 𝑅𝒃 p = 16𝜀no ln 𝑛

• Repeat:

– While	𝜙 𝒇 < 16𝜀no ln 𝑛,	scale	𝒇 and	𝒃 up	by	17 16⁄

– Set	𝛿 ≔ 𝐶 ⋅ 𝛻𝜙 𝒇 o

– If	𝛿 ≥ 𝜀 4⁄ ,	set	𝑓> ≔ 𝑓> −
¡

o�¢��
⋅ sgn 𝛻𝜙 𝒇 > ⋅ 𝑐>

– Otherwise,	terminate	and	output	𝒇 after	undoing	all	scalings
Also,	output	vertex	potentials	𝒙 ≔ R� ⋅ 𝛻lmax 2𝛼 ⋅ 𝑅 𝒃 − 𝐵𝒇
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AlmostRoute 𝒃, 𝜀

Lemma:When	AlmostRoute 𝒃, 𝜀 terminates,	we	have

𝜙 𝒇 ≤ 1 + 𝜀 ⋅
𝒃�𝒙

𝐶𝐵�𝒙 o	
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AlmostRoute 𝒃, 𝜀

Lemma:When	AlmostRoute 𝒃, 𝜀 terminates,	we	have

𝜙 𝒇 ≤ 1 + 𝜀 ⋅
𝒃�𝒙

𝐶𝐵�𝒙 o	
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AlmostRoute 𝒃, 𝜀

Lemma:When	AlmostRoute 𝒃, 𝜀 terminates,	we	have

𝜙 𝒇 ≤ 1 + 𝜀 ⋅
𝒃�𝒙

𝐶𝐵�𝒙 o	
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AlmostRoute 𝒃, 𝜀

Lemma:When	AlmostRoute 𝒃, 𝜀 terminates,	we	have

𝜙 𝒇 ≤ 1 + 𝜀 ⋅
𝒃�𝒙

𝐶𝐵�𝒙 o	
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AlmostRoute 𝒃, 𝜀

Lemma: The	number	of	iterations	of	AlmostRoute 𝒃, 𝜀 is	at	most

𝑂
𝛼; ⋅ log 𝛼 ⋅ log 𝑛

𝜀:
.

• Initialize	𝒇 = 0,	scale	𝒃 so	2𝛼 ⋅ 𝑅𝒃 p = 16𝜀no ln 𝑛
• Repeat:

– While	𝜙 𝒇 < 16𝜀no ln 𝑛,	scale	𝒇 and	𝒃 up	by	17 16⁄
– Set	𝛿 ≔ 𝐶 ⋅ 𝛻𝜙 𝒇 o

– If	𝛿 ≥ 𝜀 4⁄ ,	set	𝑓> ≔ 𝑓> −
¡

o�¢��
⋅ sgn 𝛻𝜙 𝒇 > ⋅ 𝑐>

– Otherwise,	terminate
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AlmostRoute 𝒃, 𝜀

Lemma: The	number	of	iterations	of	AlmostRoute 𝒃, 𝜀 is	at	most

𝑂
𝛼; ⋅ log 𝛼 ⋅ log 𝑛

𝜀:
.


