University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Bamberger, P. Schneider



## Algorithms and Data Structures Summer Term 2019 Exercise Sheet 4

## Exercise 1: Universal Hashing<sup>1</sup>

Consider a hashtable of size m = 11 and let p = 101. Consider hash functions of the form  $h_{a,b}(x) := [(ax+b) \mod p] \mod m$ , which form a  $\approx 1$ -universal family<sup>2</sup>  $\mathbb{H}_{a,b} = \{h_{a,b} \mid a, b \in \{1, ..., p-1\}\}$ . Choose one hash function h from the family  $\mathbb{H}_{a,b}$ . Then find five *different* keys from the set  $\mathbb{U} = \{0, \ldots, 99\}$ , such that all keys are mapped to the same table entry. Then select a hash function h' from the family  $\mathbb{H}_{a,b}$  randomly (or invent numbers a, b) and remap all keys into the table.

## Exercise 2: Hashing with Open Addressing - Examples

(a) Let  $h(s, j) := h_1(s) - 2j \mod m$  and let  $h_1(x) = x + 2 \mod m$ . Insert the keys 51, 13, 21, 30, 23, 72 into the hash table of size m = 7 using linear probing for collision resolution (the table should show the final state).

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|

(b) Let  $h(s, j) := h_1(s) + j \cdot h_2(s) \mod m$  and let  $h_1(x) = x \mod m$  and  $h_2(x) = 1 + (x \mod (m-1))$ . Insert the keys 28, 59, 47, 13, 39, 69, 12 into the hash table of size m = 11 using the double hashing probing technique for collision resolution. The hash table below should show the final state.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|----|

- (c) Repeat part (a) using the "ordered hashing" optimization from the lecture.
- (d) Repeat part (b) using the "Robin-Hood hashing" optimization from the lecture.

<sup>&</sup>lt;sup>1</sup>The exercise was changed a bit in order to get a more distinctive result

<sup>&</sup>lt;sup>2</sup>For  $p \gg m$  both prime.