
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithms and Data Structures
Summer Term 2019

Exercise Sheet 5

Exercise 1: Priority Queues

Consider the following priority queue stored in an array:

H = [(3, L), (10, D), (8, E), (12, C), (13, B), (23, R), (9, F ), (17, S), (14,M)]

Execute the following operations on H: H.insert((7, N)), H.deleteMin(), H.changeKey((13, B),9).
Write down H after each operation including the repairing process. It may help if you draw H as a
binary tree.

Exercise 2: Amortized Analysis

Consider the data structure stack in which elements can be stored in a ‘last in first out’ manner. For
a stack S we have the following operations:

• S.push(x) puts element x onto S.

• S.pop() deletes the topmost element of S. Calling pop on an empty stack generates an error.

• S.multipop(k) removes the k top objects of S, popping the entire stack if S contains fewer than
k objects.

Assume the costs of S.push(x) and S.pop() are 1 and the cost of S.multipop(k) is min(k, s) where
s is the current number of elements in S.

Use the bank account paradigm to show that we can assign all three operations constant amortized
costs.


