University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Bamberger, P. Schneider

Algorithms and Data Structures Summer Term 2019 Sample Solution Exercise Sheet 2

Exercise 1: \mathcal{O} -Notation

Proof or disprove the following statements:

- (a) $n \in \Theta(\log_2 3^n)$
- (b) $2n \in \mathcal{O}(10\sqrt{n})$
- (c) $8n^3 + 5n^2 \in \mathcal{O}(\frac{n^3}{2})$

Sample Solution

(a) The statement is true. Choose $c = \log_2 3$ und $n_0 = 1$. Then for all $n \ge n_0$ we have

$$\log_2 3^n = n \cdot \log_2 3 = c \cdot n.$$

(b) The statement is false. Let c > 0. We have

$$2n \leq c \cdot 10\sqrt{n}$$

$$\Leftrightarrow \quad n \leq c \cdot 5\sqrt{n}$$

$$\Leftrightarrow \quad \sqrt{n} \leq 5c$$

$$\Leftrightarrow \quad n \leq 25c^{2}$$

So for every c > 0 and n_0 there is an $n \ge n_0$ with $2n > c \cdot 10\sqrt{n}$ (e.g., $n = \max\{n_0, \lceil 25c^2 \rceil\}$).

(c) The statement is true. For all $n \ge 1$ we have $n^2 \le n^3$ and thus $8n^3 + 5n^2 \le 13n^3 = 26\frac{n^3}{2}$.

Exercise 2: Sort Functions by Asymptotic Growth

Sort the following functions by asymptotic growth using the \mathcal{O} -notation. Write $g <_{\mathcal{O}} f$ if $g \in \mathcal{O}(f)$ and $f \notin \mathcal{O}(g)$. Write $g =_{\mathcal{O}} f$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

n^2	\sqrt{n}	2^n	$\log(n^2)$
3^n	n^{100}	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	n!	$n\log n$
$n \cdot 2^n$	n^n	$\sqrt{\log n}$	n

Sample Solution

	$\sqrt{\log n}$	$<_{\mathcal{O}}$	$\log(\sqrt{n})$	$=_{\mathcal{O}}$	$\log n$	$=_{\mathcal{O}}$	$\log(n^2)$
$<_{\mathcal{O}}$	$(\log n)^2$	$<_{\mathcal{O}}$	\sqrt{n}	$<_{\mathcal{O}}$	n	$=_{\mathcal{O}}$	$10^{100}n$
$<_{\mathcal{O}}$	$n\log n$	$<_{\mathcal{O}}$	n^2	$<_{\mathcal{O}}$	n^{100}	$<_{\mathcal{O}}$	2^n
$<_{\mathcal{O}}$	$n \cdot 2^n$	$<_{\mathcal{O}}$	3^n	$<_{\mathcal{O}}$	n!	$<_{\mathcal{O}}$	n^n