
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithms and Data Structures
Summer Term 2019

Sample Solution Exercise Sheet 3

Exercise 1: Amortized Runtime of Dynamic Arrays

We want to implement a data structure D that stores elements consecutively in an array and supports
an operation append[x] that writes x to the first non-empty entry in D (i.e., to D[i] if D[i−1] is
the last non-empty entry in D). The array D has initial size 2 (i.e. it can hold 2 elements) but grows
dynamically as we append more elements. Let n be the current number of elements in D (n = 0 when
we initialize the data structure). Then append[x] does the following: If D.size < n write D[n]← x.
Else create a new array D′ of size 2n and copy all elements from D to D′.

Algorithm 1 append[x]

if D already contains n elements then
create a new array D′ of size 2n
for i = 0 to n−1 do

D′[i]← D[i]

D ← D′; . “Rename” D′ into D

D[n]← x; n← n + 1

Assume that creating a new array of size n takes n timesteps and writing an element into an array
entry (e.g., D[n] ← x) takes 1 timestep. For simplicity you may assume everything else takes zero
time. Starting with empty D, show that any series of append[x] operations has amortized running
time O(1) per operation.

Sample Solution

The amortized runtime of a series of n operations can be computed as the total runtime of all operations
divided by the number of operations. Let k be such that 2k ≤ n < 2k+1. Then we create a new array
and copy all elements into it after 2, 22, 23, ..., 2k steps respectively. The total cost for doing this in
the 2i-th (i > 0) append operation is 2i+1 + 2i. This is due to the fact that we create an new array
of size 2i+1 in 2i+1 time steps, and then we copy 2i elements into it in 2i time steps. In total, all the
necessary operations to double the arrays cost

Tdoubling(n) =
k∑

i=1

2i+1 + 2i ≤
k∑

i=1

2i+2 =
k−1∑
i=0

2i+3 = 23 ·
k−1∑
i=0

2i = 23 · (2k − 1) ≤ 2k+3.

Additionally, for every append operation we write one element into the array which takes one time
step, i.e. in total we have an additional Tappend(n) = n time steps. In total we have

Ttotal(n) = Tdoubling(n) + Tappend(n) ≤ n + 2k+3 ≤ 2k+1 + 2k+3 ≤ 2k+4 ≤ 24 · 2k ≤ 24 · n.

Divided by the number of operations we have obtain the amortized time Tamort(n) = 24·n
n = 16 ∈ O(1).



Exercise 2: Average Runtime1

The following algorithm obtains a number x ∈ {0, ..., n}. Additionally it obtains an array A of size n+1
that contains integers {0, ..., n} \ {x} sorted in ascending order, whereas the last entry of A is empty.
The algorithm inserts x into its position in A and moves the subsequent elements by one position.

Algorithm 2 Insert(A[0..n], x)

i← n
while A[i−1] > x do

Swap A[i− 1] and A[i]
i← i− 1

A[i]← x

Compute the average runtime for all possible inputs. To simplify things, assume that one swap ope-
ration takes one time unit, while all other operations have negligible runtime.

Sample Solution

The number of swaps that must be performed are equal to n−x. We have n+1 possibilities for choosing
x ∈ {0, ..., n}. Therefore the average runtime (i.e., the average number of swap operations) is

Tavg(n) =

∑n
x=0(n− x)

n+1
=

∑n
x=0 x

n+1
=

n(n+1)

2(n+1)
=

n

2
.

Exercise 3: Unsuitable Hash Functions

Let m be the size of a hashtable and let n� m be the biggest possible key of any (key,value)-pair. A
hash function h : {0, . . . , n} → {0, . . . ,m−1} maps keys to table entries and should meet some criteria
in order to be considered a suitable hash function.
The hash function should of course utilize the whole table, i.e., it should be a surjective function.
Furthermore, it should be “chaotic”, meaning that it should map similar keys to distinct table entries
in order to avoid having lots of collisions in case many similar keys are inserted. A hash function must
be deterministic. The following “hash functions” are unsuitable for various reasons. For each hash
function quickly explain why this is the case.

(a) h1 : k 7→ k. 2

(b) h2 : k 7→ b kn · (m−1)c.

(c) h3 : k 7→ 2 ·
(
k mod bm2 c

)
.

(d) h4 : k 7→ random(m),
(
random(m) is picked uniformly at random from {0, . . . ,m−1}

)
.

Sample Solution

(a) The given function is not even a valid hash-function, since it maps to values outside the table
range.

(b) This hash function is not seperating similar valus well, that is if k1, k2 are close, then h2(k1), h2(k2)
are close as well. Since n� m many successive keys are mapped to the same table entry.

1This exercise was added retroactively for discussion in the exercise lesson
2The notation h : k 7→ h(k) means h maps the value k to the value h(k).



(c) The function is not surjective, i.e. it does not use the whole address space (e.g. only even table
entries are used, and the entry m − 1 is never used). For m = 1 the function is undefined (since
mod 0 is undefined).

(d) A truly randomized function prohibits finding a value once it has been hashed.


