

Algorithms and Data Structures Summer Term 2019 Sample Solution Exercise Sheet 6

Exercise 1: Master Theorem for Recurrences

Use the *Master Theorem* for recurrences, to fill the following table. That is, in each cell write $\Theta(g(n))$, such that $T(n) \in \Theta(g(n))$ for the given parameters a, b, f(n). Assume $T(1) \in \Theta(1)$. Additionally, in each cell note the case you used (1st, 2nd or 3rd by the order given in the lecture). We filled out one cell as an example.

$T(n) \!=\! aT(\tfrac{n}{b}) \!+\! f(n)$	a = 16, b = 2	a = 1, b = 2	a = b = 3	
f(n) = 1	$\Theta(n^4), 1st$			
f(n) = n				
$f(n) = n^4$				

Sample Solution

$T(n) = aT(\frac{n}{b}) + f(n)$	a = 16, b = 2	a = 1, b = 2	a = b = 3
f(n) = 1	$\Theta(n^4), 1st$	$\Theta(\log n), 2nd$	$\Theta(n), 1st$
f(n) = n	$\Theta(n^4), 1st$	$\Theta(n), 3rd$	$\Theta(n\log n), 2nd$
$f(n) = n^4$	$\Theta(n^4 \log n), 2nd$	$\Theta(n^4)$, 3rd	$\Theta(n^4)$, 3rd

Exercise 2: Peak Element

You are given an array A[1...n] of n integers and the goal is to find a peak element, which is defined as an element in A that is equal to or bigger than its direct neighbors in the array. Formally, A[i] is a peak element if $A[i-1] \leq A[i] \geq A[i+1]$. To simplify the definition of peak elements on the rims of A, we introduce *sentinel-elements* $A[0] = A[n+1] = -\infty$.

- (a) Give an algorithm with runtime $\mathcal{O}(\log n)$ (measured in the number of read operations on the array) which returns the position *i* of a peak element.
- (b) Prove that your algorithm always returns a peak element, give a recurrence relation for the runtime and use it to prove the runtime.

Sample Solution

(a) Algorithm 1 Peak-Element(A, ℓ, r)	
if $\ell = r$ then return $A[\ell]$	⊳ base case
$m \leftarrow \lceil \frac{\ell+r}{2} \rceil$	
if $A[m] \leq A[m+1]$ then	
${f return}$ Peak-Element($A,m+1,r$)	
else if $A[m] \leq A[m-1]$ then	
${f return}$ Peak-Element($A,\ell,m-1$)	
else return $A[m]$	\triangleright peak element found

A call of Peak-Element(A, 1, n) returns a peak element in A.

(b) We show the invariant that during each call of Peak-Element (A, ℓ, r) , we have $A[\ell-1] \leq A[\ell]$ and $A[r] \geq A[r+1]$. Since $A[0], A[n+1] = -\infty$, this is obviously true for Peak-Element (A, 1, n). During sub-calls of Peak-Element (A, ℓ, r) this condition is maintained by the If-conditions and the recursive calls and the appropriate sub-array. This implies that we have found a peak element when $\ell = r$ (at the latest, but we may find one earlier).

During every recursive step, the considered sub-array is at most half the size of the previous one, thus the algorithm terminates eventually. Additionally, in each recurse step we make at most one recursive sub-call. Furthermore, in each recursive step we read at most 5 array entries. Thus we have $T(n) \leq T(n/2) + 5$ (reads), which solves to $T(n) \in \mathcal{O}(\log n)$ using the Master Theorem.