
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithms and Data Structures
Summer Term 2019

Sample Solution Exercise Sheet 6

Exercise 1: Master Theorem for Recurrences

Use the Master Theorem for recurrences, to fill the following table. That is, in each cell write Θ
(
g(n)

)
,

such that T (n) ∈ Θ
(
g(n)

)
for the given parameters a, b, f(n). Assume T (1) ∈ Θ(1). Additionally, in

each cell note the case you used (1st, 2nd or 3rd by the order given in the lecture). We filled out one
cell as an example.

T (n)=aT (nb )+f(n) a = 16, b = 2 a = 1, b = 2 a = b = 3

f(n) = 1 Θ(n4), 1st

f(n) = n

f(n) = n4

Sample Solution

T (n)=aT (nb )+f(n) a = 16, b = 2 a = 1, b = 2 a = b = 3

f(n) = 1 Θ(n4), 1st Θ(log n), 2nd Θ(n), 1st

f(n) = n Θ(n4), 1st Θ(n), 3rd Θ(n log n), 2nd

f(n) = n4 Θ(n4 log n), 2nd Θ(n4), 3rd Θ(n4), 3rd

Exercise 2: Peak Element

You are given an array A[1 . . . n] of n integers and the goal is to find a peak element, which is defined
as an element in A that is equal to or bigger than its direct neighbors in the array. Formally, A[i] is a
peak element if A[i− 1] ≤ A[i] ≥ A[i + 1]. To simplify the definition of peak elements on the rims of
A, we introduce sentinel-elements A[0] = A[n+1] = −∞.

(a) Give an algorithm with runtime O(log n) (measured in the number of read operations on the
array) which returns the position i of a peak element.

(b) Prove that your algorithm always returns a peak element, give a recurrence relation for the runtime
and use it to prove the runtime.



Sample Solution

(a) Algorithm 1 Peak-Element(A, `, r)

if ` = r then return A[`] . base case

m← d `+r
2 e

if A[m] ≤ A[m+1] then
return Peak-Element(A,m + 1, r)

else if A[m] ≤ A[m−1] then
return Peak-Element(A, `,m− 1)

else return A[m] . peak element found

A call of Peak-Element(A, 1, n) returns a peak element in A.

(b) We show the invariant that during each call of Peak-Element(A, `, r), we have A[`−1] ≤ A[`]
and A[r] ≥ A[r+1]. Since A[0], A[n + 1] = −∞, this is obviously true for Peak-Element(A, 1, n).
During sub-calls of Peak-Element(A, `, r) this condition is maintained by the If-conditions and
the recursive calls and the appropriate sub-array. This implies that we have found a peak element
when ` = r (at the latest, but we may find one earlier).

During every recursive step, the considered sub-array is at most half the size of the previous one,
thus the algorithm terminates eventually. Additionally, in each recurse step we make at most one
recursive sub-call. Furthermore, in each recursive step we read at most 5 array entries. Thus we
have T (n) ≤ T (n/2) + 5 (reads), which solves to T (n) ∈ O(log n) using the Master Theorem.


