
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithms and Data Structures
Summer Term 2019

Sample Solution Exercise Sheet 8

Exercise 1: AVL Trees

Consider the following AVL tree
8

3

2 6

5

12

10

(a) Perform the operations insert(4), insert(7) and insert(1) and the necessary rotations to re-
balance the AVL-tree. Draw the state of the tree after each operation.

Remark: Inserting works the same as in binary search trees. Afterwards, for each ancestor of
the inserted node (bottom up), repair the AVL condition (if violated) by performing an according
rotation (left or right).

(b) In the resulting tree, perform the operations delete(5) and delete(7) and the necessary rotations
to re-balance the AVL-tree. Draw the state of the tree after each operation.

Remark: Deleting works the same as in binary search trees. Afterwards, starting at the position of
the node that was used to replace the deleted key, for each ancestor (bottom up) repair the AVL
condition (if violated) by performing an according rotation (left or right or double rotations).

Sample Solution

(a) insert(4), before balance:

8

3

2 6

5

4

12

10

insert(4), after balance:

8

3

2 5

4 6

12

10

insert(7), before balance:

8

3

2 5

4 6

7

12

10

insert(7), after balance:

8

5

3

2 4

6

7

12

10

insert(1), before balance:

8

5

3

2

1

4

6

7

12

10

insert(1), after balance:

5

3

2

1

4

8

6

7

12

10

(b) delete(5), (no balance required):

6

3

2

1

4

8

7 12

10

delete(7), before balance:

6

3

2

1

4

8

12

10

delete(7), double rotation part 1:

6

3

2

1

4

8

10

12

delete(7), double rotation part 2:

6

3

2

1

4

10

8 12

Exercise 2: (a, b)-Trees

Consider the following (2, 4)-tree

5 13 19

3

1 4

9

87 11

15 17

14 16 18

22 31 37

20 25 27 30 33 34 35 42

(a) Perform the operations insert(2), insert(26) and insert(36). Draw the state of the (2, 4)-tree
after all operations.

(b) In the original tree, perform the operations delete(11), delete(3). Draw the state of the (2, 4)-tree
after both operations.

(c) For exercise lesson: also do a delete(13) operation.

Sample Solution

(a) insert(2):
5 13 19

3

1 4

9

87 11

15 17

14 16 18

22 31 37

20 25 27 30 33 34 35 422

insert(26) step 1:
5 13 19

3

1 4

9

87 11

15 17

14 16 18

22 31 37

20 25 27 30 33 34 35 422 26

>b nodes!

insert(26) step 2:
5 13 19

3

1 4

9

87 11

15 17

14 16 18

22 31 37

20 25

27

30 33 34 35 422 26

>b nodes!

split!

insert(26) step 3:

5 13 19

3

1 4

9

87 11

15 17

14 16 18

22

31

37

20 25

27

30 33 34 35 422 26

>b nodes!

split!

insert(26) step 4:

5 13

19

3

1 4

9

87 11

15 17

14 16 18

22

31

37

20 25

27

30 33 34 35 422 26

split!

insert(36) step 1:

5 13

19

3

1 4

9

87 11

15 17

14 16 18

22

31

37

20 25

27

30 33 34 35 422 26 36

>b nodes!

insert(36) step 2:

5 13

19

3

1 4

9

87 11

15 17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

split!

(b) delete(11) step 1:

5 13

19

3

1 4

9

87

15 17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

<a nodes!

delete(11) step 2:

5 13

19

3

1 4

8

97

15 17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

rotate!

delete(3) step 1:

5 13

19

1 4

8

97

15 17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

<a nodes!

delete(3) step 2:

5

13

19

1 4

8

97

15 17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

merge!

merge!

(c) delete(13) step 1:

5

19

1 4

8

97

15 17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

<a nodes!

can’t be merged!

delete(13) step 2:

5

19

1 4

8

97

15

17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

pull key from child!

(e.g.: from right)

delete(13) step 3:

5

19

1 4

8

97

15

17

14 16 18

22

31

37

20 25

27

30 33 34

35

422 26 36

merge!

Remark: For more details on all cases of the delete operation consider e.g. “Introduction to Algo-
rithms” by Knuth, Leierson, Rivest and Stein.

