University of Freiburg Dept. of Computer Science

Prof. Dr. F. Kuhn P. Bamberger P. Schneider

Algorithms and Datastructures Summer Term 2020 Exercise Sheet 2

Due: Wednesday, 27th of May, 4 pm.

Exercise 1: \mathcal{O} -notation

(7 Points)

Prove or disprove the following statements. Use the *set definition* of the \mathcal{O} -notation (lecture slides week 2, slides 11 and 12).

(a)
$$3n^3 + 8n^2 + n \in \mathcal{O}(n^3)$$
 (1 Point)

(b)
$$2^n \in o(n!)$$
 (2 Points)

(c)
$$2\log n \in \Omega((\log n)^2)$$
 (2 Points)

(d)
$$\max\{f(n), g(n)\} \in \Theta(f(n) + g(n))$$
 for non-negative functions f and g . (2 Points)

Exercise 2: Sorting by asymptotic growth

(6 Points)

Sort the following functions by their asymptotic growth. Write $g <_{\mathcal{O}} f$ if $g \in \mathcal{O}(f)$ and $f \notin \mathcal{O}(g)$. Write $g =_{\mathcal{O}} f$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$ (no proof needed).

\sqrt{n}	2^n	n!	$\log(n^3)$
3^n	n^{100}	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	(n+1)!	$n \log n$
$2^{(n^2)}$	n^n	$\sqrt{\log n}$	$(2^n)^2$

Exercise 3: Stable Sorting

(7 Points)

A sorting algorithm is called stable if elements with the same key remain in the same order. E.g., assume you want to sort the following strings where the sorting key is the first letter by alphabetic order:

A stable sorting algorithm must generate the following output:

A sorting algorithm is not stable (with respect to the sorting key) if it outputs, e.g., the following:

- (a) Which sorting algorithms from the lecture (except CountingSort) are *not* stable? Prove your statement by giving an appropriate example. (4 Points)
- (b) Describe a method to make any sorting algorithm stable, without changing the *asymptotic* runtime. Explain.

 (3 Points)