University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Bamberger

P. Schneider

Algorithms and Datastructures Summer Term 2020 Exercise Sheet 11

Due: Wednesday, 29th of July, 4 pm.

Exercise 1: Bitstrings without consecutive ones

(10 Points)

Given a positive integer n, we want to compute the number of n-digit bitstrings without consecutive ones (e.g., for n=3 this number is 5, as 000, 001, 010, 100, 101 are the 3-digit bitstrings without consecutive ones).

- (a) Give an algorithm which solves this problem in time $\mathcal{O}(n)$. Explain the runtime. (6 Points)
- (b) Implement your solution. You may use the template DP.py. Run your algorithm on the values 10, 20 und 50 and write your results in erfahrungen.txt. (4 Points)

Exercise 2: Partitioning

(10 Points)

Given a set $X = \{x_0, \ldots, x_{n-1}\}$ with $x_i \in \mathbb{N}$, we want to determine whether there is a subset $S \subseteq X$ such that $\sum_{x \in S} x = \sum_{x \in X \setminus S} x$ (it is not necessary to compute S).

- (a) Let $W := \sum_{x \in X} x$. Give a recursive formula $s : \{0, \dots, n-1\} \times \{0, \dots, W\} \to \{\text{True, False}\}$ such that s(i,j) = True if and only if there is a $S \subseteq \{x_0, \dots, x_i\}$ such that $\sum_{x \in S} x = j$. Explain how s can be used to solve the above problem in time $\mathcal{O}(W \cdot n)$.
- (b) Implement your solution. You may use the template DP.py. Run your algorithm on the sets given in set1.txt, set2.txt and set3.txt and write your results to erfahrungen.txt (4 Points)