Algorithms and Data Structures

Lecture 10

Graph Algorithms lll:
Shortest Paths

FREIBURG

Z
=)

Fabian Kuhn
Algorithms and Complexity



Shortest Paths

Single Sourse Shortest Paths Problem

* Given: weighted graph G = (V,E,w), start node s € V
— We denote the weight of an edge (u, v) by w(u, v)
— Assumption for now: Ve € E:w(e) = 0

* Goal: Find shortest paths / distances from s to all nodes
— Distance fromsto v: d;(s,v) (length of a shortest path)

Distance from node 1 tonode 7 : 10

Fabian Kuhn Algorithms and Complexity



Optimality of Subpaths

Lemma: If vy, v4, ..., Uy is a shortest path from v, to vy, then
it holds forall 0 < i < j < k that the subpath v;, v; 4, ..., V;

is also a shortest path from v; to v;.

Shortest path from v, to vy:

* Subpath from v; to v; is also a shortest path.

— Otherwise, one could replace the path from v; to v; by the shortest path
from v; to v;.

— |If by doing this, nodes are visited multiple time, one can cut out cycles and
obtains an even shorter path.

 Lemma also holds for negative edge weights,

— as long as the graph does not contain negative cycles.

Fabian Kuhn Algorithms and Complexity



Shortest-Path Tree

* Spanning tree that is rooted at node s and that contains
shortest paths from s to all other nodes.
— Such a tree always exists (follows from the optimality of subpaths)

* For unweighted graphs: BFS spanning tree
* @Goal: Find a shortest path tree

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm: Idea
e Algorithm by Edsger W. Dijkstra (published in 1959)

Idea:
 We start at s and build the spanning tree in a step-by-step manner.

Invariant:
Algorithm always has a tree rooted at s, which is a subtree

of a shortest path tree.

e Goal: In each step of the algorithm, add one node

— Initially: subtree only consists of s
(trivially satisfies invariant...)

— 15t step: Because of the optimality of subpaths, there must be a shortest
path consisting of a single edge...

— Always add the remaining node at the smallest distance from s.

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm : One Step

Given: A tree T thatis rooted in s, such that T is a subtree of a
shortest paths tree for node s in G. (nodes of T : S)

How can we extend T by a single node?

S : nodes in the tree T

N(S) : nodes that can be added to
the tree directly.

To add v € N(S) it most hold that

dg(s,v) = min{dg(s,u) + w(u, v)}

We will see that this always holds for
v € N(S) with minimum distance
d:(s,v) from s.

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm : One Step

Given: T is subtree of a shortest path tree for sin G.

Lemma: For a node v € N(S) and an edge (u, v) with u € S such
that d;(s,u) + w(u, v) is minimized, it holds that

de(s,v) =d;(s,u) + w(u,v)

Consider the s-v path that we obtain in this way:
s (0—O —O—@——® v

Assume that there is a shorter path:
N(S)

s @0 —@—@—C —@
— Because there are no negative edge weights, we therefore have
de(s,x) +w(x,y) <dg(s,v) <d;(s,u) + w(u,v)

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm

Invariant:
Algorithm always has atree T = (S, A) rooted at s, which is
a subtree of a shortest path tree of G.

* Atthe beginning, we have T = ({s}, ®)

* Foreachnodev & S, one at all times computes

6(s,v) = uesrr?lergl ) de(s,u) + w(u, v)

— as well as the incoming neighbor u =: a(v) that minimized the expression...
* §(s,v) corresponds to an s-v path = 6(s,v) = d;(s,v)

* Lemma on last slide:
For minimum 8(s, v), we have: 6(s,v) = d;(s,v)

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm

Initialization T = (@, ©)
 6(s,s) =0, andé(s,v) = forallv #s
* a(v) =NULLforallveV

update 6(s, x)

Iteration Step
e Choose a node v with smallest

6(s,v) = uESrr?I\llgl ) de(s,u) + w(u, v)

* Go through all out-neighbors x € V' \ S and set
5(s,x) = min{d(s,x),6(s,v) + w(v,x)}

— If §(s, x) is decreased, set a(x) = v

* Add node v and edge (a(v),v) to the tree T.

Fabian Kuhn Algorithms and Complexity 9



Dijkstra’s Algorithm: Example

L —2N s

(00)
. oo
4 23
a 13 8
6 2
2

, - 3 oo

17 0

) g ’
2
0 0 8
18 - 1

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm: Example

(00)
. [,
4 23
1 13 oo
6 2
2 (o)
1 17 3
17 19
) g 8
20
0 20
18 18 1

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm: Example

L —2N s

4
. o0
4 23
13
1 14
6 2
2 o0
1 7 3
17 19
) g 8
20
0 20
18 18 1

Fabian Kuhn Algorithms and Complexity



Dijkstra’s Algorithm: Example

L5~ a

4
. o0
4 23
13
1 13
6 2
2 o0
1 7 3
17 19
) g 8
20
0 20
18 18 1

Fabian Kuhn Algorithms and Complexity 13



Dijkstra’s Algorithm: Example

L&

4
. 37,
4 23
13
1 13
6 2
2 o0
1 7 3
17 19
) g 8
20
0 20
18 18 1

Fabian Kuhn Algorithms and Complexity 14



Dijkstra’s Algorithm: Example

L5~ a

4
. 37
4 23
1 13 9
6 2
2 ®)
1 7 3
17 19
) g 8
20
0 20
18

Fabian Kuhn Algorithms and Complexity 15



Dijkstra’s Algorithm: Example

L5~ a

4
. 19
4 23
1 13 9
6 2
2 12)
1 7 3
17 11
) g 8
20
0 20
18

Fabian Kuhn Algorithms and Complexity 16



Dijkstra’s Algorithm: Example

L5~ a

4
. 19
4 23
1 13 9
6 2
2 12)
1 7 3
17 11
) g 8
20
0 13
18 12 1

Fabian Kuhn Algorithms and Complexity 17



Dijkstra’s Algorithm

Initialization T = (@, ©)
e 6(s,s) =0, andd6(s,v) =ooforallv #s
* a(v) =NULLforallveV

update 6(s, x)

Iteration Step
e Choose a node v with smallest

6(s,v) = uesrr?&ﬁ ) de(s,u) + w(u, v)

* Go through all out-neighbors x € V' \ S and set
5(s,x) = min{d(s,x),6(s,v) + w(v,x)}

— If §(s, x) is decreased, set a(x) = v Similar to the
* Add node v and edge (a(v),v) to the tree T. VERREICIeleA 1
of Prim!

Fabian Kuhn Algorithms and Complexity 18



Reminder : Prim’s MIST Algorithm

H = new priority queue; A = @
for all ueV\{s} do

H.insert(u, o); a(u) = NULL
H.insert(s, 0)

while H is not empty do
u = H.deleteMin()
for all unmarked neighbors v of u do
if w({u,v}) <d(v) then

H.decreaseKey(v, w({{u,v}))
a(v) = u

u.marked = true

if u#s then 4 = AU{{u,a(u)}}

Fabian Kuhn Algorithms and Complexity

19



Dijkstra’s Algorithm : Implementation

H = new priority queue; A = @
for all ueV\{s} do

H.insert(u, o); 6(s,u) = oo; a(u) = NULL
H.insert(s, 0)

while H is not empty do
u = H.deleteMin()
for all unmarked out-neighbors v of u do
if 6(s,u) + w(u,v) < 6(s,v) then

5(s,v) = 6(s,u) +w(u,v)
H.decreaseKey (v, 6(s,v))
a(v) = u

u.marked = true

if u#s then 4 = AU {(a(u),u)}

Fabian Kuhn Algorithms and Complexity

20



Dijkstra’s Algorithm: Running Time

* Algorithm implementation is almost identical to the
implementation of Prim’s MST algorithm.

* Number of heap operations:

create: 1, insert:n, deleteMin:n, decreaseKey: < m
— Or alternatively without decrease-key: O(m) insert and deleteMin Op.

* Running time with binary heap:

O(mlogn)

* Running time with Fibonacci heap:

O(m+ nlogn)

Fabian Kuhn Algorithms and Complexity



Negative Edge Weights

e Shortest paths can also be defined for graphs with
negative edge weights.

— Shortest path is defined if there no shorter way, even if nodes can be visited
multiple times.

Example

Fabian Kuhn Algorithms and Complexity 22



Negative Edge Weights

Lemma: In a directed, weighted graph G, there is a shortest path from
s to v if and only if there is no there is no negative cycle that is
reachable from s and from which one can reach v.

* Also holds for undirected graphs if edges {u, v} are considered as 2
directed edges (u, v) and (v, u).

v

S :> no shortest path

fromu to v

Nodes are not
visited multiple times.

(
We can restrict our attention to

ule; re?chable :> simple path. There are only finitely
negative cycle many such path

Fabian Kuhn Algorithms and Complexity




Dijkstra’s Algorithm and Negative Weights

Does Dijkstra’s algorithm work with negative edge weights?

e Answer: no

Shortest path has length 2.

Dijkstra path has length 3.

Fabian Kuhn Algorithms and Complexity



Bellman-Ford Algorithm

* To simplify, we only compute the distances d (s, v)

Assumption:
 For all nodes v: algorithm has dist. estimate (s, v) = ds(s, V)

* Initialization: 6(s,s) =0, 6(s,v) = o forv # s

Observation:
* If (u,v) € E suchthat§(s,u) + w(u,v) < §(s,v), then we can
decrease (and thus improve) 6 (s, v) because

de(s,v) <d;(s,u) + w(u,v)

<d6(s,u) +w(u,v)

Fabian Kuhn Algorithms and Complexity

25



Bellman-Ford Algorithm

* Consider all edges (u, v) and try to improve 6 (s, v),

— until all distances are correct (Vv € V: 6(s,v) = d;(s,v))
5(s,s) =0; VveV\{s}:8(s,v) =0
repeat

for all (u,v) € E do
if 6(s,u) + w(u,v) < 6(s,v) then
6(s,v) ==6(s,u) +w(u,v)

until Vv eV: §(s,v) =d;(s,v)

e How many repetitions are necessary?

— Shortest paths consisting of one edge = 1 repetitions
— Shortest paths consisting of two edges = 2 repetitions
— Shortest paths consisting of k edges = k repetitions

Fabian Kuhn Algorithms and Complexity

26



Bellman-Ford Algorithm

5(s,s) =0; VwveV\{s}:38(s,v) =00
for i := 1 to n-1 do

for all (u,v) € E do
if 6(s,u) + w(u,v) < 6(s,v) then
6(s,v) ==6(s,u) +w(u,v)

After i repetitions, we have 6(s,v) < d(Gi) (s,v), where dg) (s,v)is
the length of a shortest path consisting of at most i edges.

* Follows by induction on i:
— i =0:6(s,5) = déo)(s,s) =0,v+s = 6(s,v) = déo)(s,v) = 0

— 1>0:
dg) (s,v) = min {dg_l) (s,v), min dg_l) (s,u) + w(u, v)}
UEN (v)

(shortest path consists of < i — 1 edges or of exactly i edges)

Fabian Kuhn Algorithms and Complexity

27



Bellman-Ford Algorithm

5(s,s) =0; VwveV\{s}:38(s,v) =00
for i := 1 to n-1 do

for all (u,v) € E do
if 6(s,u) + w(u,v) < 6(s,v) then
5(s,v) =6(s,u) +w(u,v)

Theorem: If the graph has no negative cycles that are reachable from
s, at the end all distances are computed correctly.

 Atthe end, we have forall v € I/:
5(s,v) < d¥ Y (s,v)
* Because every path consists of < n — 1 edges, we also have

dén_l) (s,v) = d;(s,v)

Fabian Kuhn Algorithms and Complexity

28



Detecting Negative Cycles

 We will see: If there is a (from s reachable) negative cycle, then
there is an improvement for some edge:

J(u,v) €EE:6(s,u) +w(u,v) < (s, v)

Bellman-Ford Algorithm

for 1 := 1 to n-1 do
for all (u,v) € E do
if 6(s,u) +w(u,v) < §(s,v) then
6(s,v) =6(s,u) + w(u,v)
for all (u,v) € E do
if 6(s,u) + w(u,v) < 6(s,v) then
return false
return true

Fabian Kuhn Algorithms and Complexity



Detecting Negative Cycles

Lemma: If ¢ contains a negative cycles that is reachable from s, then
the Bellman-Ford algorithm returns false.

|
neg. cycle = Z w(v;_1,1;) <0

reachable from s = §(s,v;) # o

Proof by contradiction:
« Assumption: Vi € {1, ... k} :6(s,v_q) +w(v;_1,v;) = 6(s,v;)

k
(s, v;) < (5(5 vi_1) + w(v;_ ,vl))
; z 1 1

26(5 Vi_1) +Zw(vl 1, Vi)

Fabian Kuhn Algorithms and Complexity




Bellman-Ford Algorithm : Shortest Paths

A shortest path tree can be computed in the usual way.

Initialization:
e 6(s,5s) =0, furv+s:6(s,v) = NULL
 a(s) =NULL, forv # s : a(v) = NULL

In every loop iteration:

if 6(s,u) + w(u,v) < 6(s,v) then
6(s,v) =6(s,u) + w(u,v)
a(v) =u

* Atthe end, a(v) points to a parent in the shortest path tree
— if there are no negative cycles...

Fabian Kuhn Algorithms and Complexity 31



Bellman-Ford Algorithm : Summary

Theorem: If there is a negative cycle that is reachable from s, the
Bellman-Ford algorithm detects this. If no such cycle exists, the

Bellman-Ford algorithm computes a shortest path tree in time
o(lv]-1ED.

* Correctness: already proven

* Running time:
— n—1+1 loop iterations
— In every loop iteration, we go once through all the edges.

* Remark: One can adapt the algorithm such that it computes a

shortest path for all v, for shich such a path from s existsts (and it
detects if no shortest path exists).

— in the same asymptotic running time

Fabian Kuhn Algorithms and Complexity



Routing Paths in Networks

Goal: Optimal routing paths for some destination t

* For every node, we want to know to which neighbor one has to
send a message destined at node t.

* This corresponds to computing a shortest path tree if all edges are
reversed (transpose graph)

Algorithm:

* Nodes remember tha current distance §(u, t) and the currently
best neighbor.

* All nodes in parallel check if there is an improvement for some
neighbor:
J(u,v) €EE:wlu,v)+6(vt) <dlut)

* Corresponds to a parallel variant of the Bellman-Ford algorithm

Fabian Kuhn Algorithms and Complexity



Shortest Paths Between All Node Pairs

 all pairs shortest paths problem

Compute single-source shortest paths for all nodes

* Dijkstra algorithm with all nodes:
Running time: n - O(Running time Dijkstra) € O(mn + n“logn)
— Problem: only works for non-negative edge weights

* Bellman-Ford algorithm with all nodes:
Running time: n - O(Running time BF) € 0(mn?) € 0(n*)
— Problem: slow...

— If the Bellman-Ford algorithm is carried out for all nodes, the running time
can be improved to 0(n3 - logn).

— If all dg) (u, v)-distances are known, one can directly compute the

déZi) (u, v)-distances in one iteration.

* Further details and discussion of other algorithms in various text books.

Fabian Kuhn Algorithms and Complexity



