Algorithms and Data Structures

Lecture 12

String Matching (Text Search)

FREIBURG

Z
=)

Fabian Kuhn
Algorithms and Complexity

Text Search / String Matching

Given:

* two strings

* textT (typically long)

* pattern P (typically short)

Goal:
 Find all occurrencesof PinT

Assumptions:
 LengthoftextT :n, Length of pattern P :m (m K n)

Example:
e Search pattern P =“ABCA” in the following string

T = ABI CLABCAD LHABCABCA KAHBCA ALBCABABCABL LKAGA

Fabian Kuhn Algorithms and Data Structures

Motivation

* This is obviously important...

* Required in every text editor
— Every editor has a find function

e Supported by higher programming languages:
— Java: String.indexOf(String pattern, int fromThisPosition)
— C++: std::string.find(std::string str, size_t fromThisPosition)
— Python: str.find(pattern, from), where str is a string

Fabian Kuhn Algorithms and Data Structures

Naive Algorithm

* Go through the text from left to right

 The pattern can occur at each of the positions s =0,...,n—m

m n—1

I l

n

0
¢

~

* Test at each of these positions if there is a match between the

pattern an the corresponding part of the text,
— by going trough the pattern character by character and comparing with the
corresponding character in the text.

Fabian Kuhn Algorithms and Data Structures

Naive Algorithm

TestPosition(s): [/ testsifT[s,.., s+ m—1]==P

t=20

while t <m and T[s + t] == P|[t] do

t=t+1

return (t ==m)

Laufzeit:
m, if P is found
#Iter.:==11 4+ min T[s +i] # P[i], else
o<i<m

* Worst Case: 0O(m)
— In the worst case, one has to check all m positions of P
— This is in particular the case if P is found

e BestCase: 0(1)

— In the best case, we already see at the first character that there is no match
(is T[s] # P[0])

Fabian Kuhn Algorithms and Data Structures

Naive Algorithm

TestPosition(s): [/ testsif T[s, ..., s + m — 1] ==
t=20
while t <m and T[s +t] == P|[t] do
t=t+1
return (t ==m)

String-Matching:
for s from 0 to n—m do
if TestPosition(s) then
report found match at position s

Running Time:
* Worst Case: 0(n - m)
 BestCase :0(n)

Fabian Kuhn Algorithms and Data Structures

Rabin-Karp Algorithm

Basic Idea

* For simplicity , we assume that the text only consists of the digits
0..,9

— Then we can understand the pattern and the text window as numbers

* We again move a window of length m over the text and check at

each position if the pattern matches.

0 n—m n—1
| |
5(4(8|9(6

'
T (9]/6|4|5|5|6(5[|0|0|1|8(9|0|8|9|7|7|6|5|0|0|1|1(2]|3
6

P 5/0(0]1

* If the window is moved by one to the right, the new number can

be computed in a simple way from the old number
- +
9|6/4[5|5]6 64556 = (96455 —9-10™ 1) - 10+ 6

|)
[

old window | nhew window

Fabian Kuhn Algorithms and Data Structures

Rabin-Karp Algorithm

Observations:

In each step, we just have to compare two numbers.
If the numbers are equal, the pattern appears at that position.

When moving the window by one position, the new number can
be computed from the old number in time 0(1).

If we can compare two numbers in time 0(1), then the algorithm
has a running time of O (n).

Problem: The numbers can be very large (©(m) bits)
— Comparing two ©(m)-bit numbers requires time @(m)
— Not better than the naive algorithm

Idea: Apply hashing and compare hash values

— If the window is moved by one to the right, we need to be able to compute
the new hash value from the old hash value in time 0(1).

Fabian Kuhn Algorithms and Data Structures

Rabin-Karp Algorithmus

Solution of Rabin and Karp:
* We calculate everything with numbers modulo M

— M should be as large as possible, however still small enough such that
numbers in the range 0, ..., M — 1 fit in one memory cell (e.g., 64 Bit).

e Pattern and text window are then both numbers in
{0,...,.M — 1}

* When moving the search window, the new number can again be
computed in time 0(1).
— We will look at this afterwards...

* If the pattern is found, the two numbers are equal. If not, the can
nevertheless be equal

— If the numbers are equal, then we again check if we have found the pattern
in a character-by-character way as in the naive algorithm.

Fabian Kuhn Algorithms and Data Structures

Rabin-Karp Algorithm: Example

Text: 572830354826 Pattern: 283 Modulus M =5
Pattern: 283 mod 5 = 3

1st window: 572 mod 5 = 2

in 0(1) Zeit
2"d window: 728 mod 5 = 3> (1)

test: 728 #= 283 — no match
3rd window: 283 mod 5 = 3

L»test: 283 = 283 = pattern found

Fabian Kuhn Algorithms and Data Structures 10

Computations Modulo M

xmodM =y & 3q€Z: y=x+q-MANye{0,.. M—1}

 x mod M: add/subtract M from x until the result is in the range
{0,...,M — 1}

Some Rules:
(a-b) modM = ((a mod M) - (b mod M)) mod M
(a+b)modM = ((a mod M) + (b mod M)) mod M

a=k-M+c = amodM =c¢

b=¢ M4+d = bmodM=d (©4€W0 .. M—1})

a-bmodM = (k- M? + (kd + 4c) - M + cd) mod M
=cdmodM = (amod M) - (b mod M) mod M

Fabian Kuhn Algorithms and Data Structures

Computations Modulo M

xmodM =y & 3q€Z: y=x+q-M N ye{0,.. M—1}

 x mod M: add/subtract M from x until the result is in the range
{0,...,M — 1}

Some Rules:
(a-b) modM = ((a mod M) - (b mod M)) mod M
(a+b)modM = ((a mod M) + (b mod M)) mod M

Moving the Window:
* Moving window from position s to positions + 1

t:=(T[s]..T[s+ M —1]) mod M,
t" = (T[s+1]...T[s + M]) mod M

t' = ((t —T[s]- (™ *mod M)) b+ T[s + M]) mod M

Fabian Kuhn Algorithms and Data Structures

Computations Modulo M

xmodM =y & 3q€Z: y=x+q-M N ye{0,.. M—1}

Negative Numbers
* We need that x mod M is always in {0, ..., M — 1}

Examples:
24 mod 10 = 4, 4 mod 10 = 4, —4 mod 10 =6
e But: InJava/ C++/ Python, we have —x % m = —(x % m)
Examples:
24 % 10 = 4, 49% 10 = 4, —49% 10 =—4

 Workaround: If the result of x % M is negative, just add M to end
up in the correct domain.

Fabian Kuhn Algorithms and Data Structures

Rabin-Karp Algorithm: Pseudocode

Text T[0 ...n — 1], Pattern P[0 ...m — 1], Base b, Modulus M

h=b"1mod M Can easily be computed in time O(m) and if
done right even in time O(logm)

p=0; t=0;
for i=0 to m—1 do hash value of P: p := P mod M
=(p:b+ Pli]) mod M |
t — (t- b+ T[i]) mod M hash value of T[0..m — 1]:

t:=T[0..m—1] mod M

for s=0 to n—m do
if p ==t then

Time O(m) if the hash

TestPosition(s) | values match
t = ((t—TI h)bN+T3+m])modM

h=b"m1modM § update t in time 0(1)

Fabian Kuhn Algorithms and Data Structures

Rabin-Karp Algorithm: Running Time
Pre-Computation: O(m)

In the worst case: O(n - m)

* The wirst case happens if the numbers match in each step. Then
one has to check each of the m characters in each step to see if
the pattern has really been found.

— Should not happen too often is M is chosen in the right way...
— Except if the pattern really occurs very often (0(n) times)...

In the best case: O(n + k-m) (k: #occurrences of P in T)

* In the best case, the numbers are only equal if the pattern is really
found. The time cost is then O(n + k - m), if the pattern appears k
times in the text.

Fabian Kuhn Algorithms and Data Structures

Choice of the Parameters ...

Number Representation and Choice of M
« We would like that for x # y, it is “unlikely” that h(x) = h(y)
(for h(x) := x mod M)

 We assume that the characters in pattern and text are represented
as digits of a number in base-b representation
— In our examples, we had b = 10

* If b and M have a common divisor, h(x) = h(y) for x # y is not so
unlikely ...

Extreme case b = 10,M = 20 (b is a divisor of M)

m—1 | 1, ifi =0
P=ay,_1,..,0,0y = 2 a; - 10 10 mod 20 =< 10, ifi=1
i=0 0, ifi > 1

P mod 20 = (a; - 10 + ay) mod 20

Fabian Kuhn Algorithms and Data Structures

Choice of the Parameters ...

Number Representation and Choice of M

« We would like that for x # y, it is “unlikely” that h(x) = h(y)
(for h(x) := x mod M)

 We assume that the characters in pattern and text are represented
as digits of a number in base-b representation

— In our examples, we had b = 10

* If b and M have a common divisor, h(x) = h(y) for x # y is not so
unlikely ...

We therefore choose

* The base b as a sufficiently large prime number
— For ASCII characters, we need b > 256

M can then be chosen (almost) arbitrarily, ideally as a power of 2
— Intermediate results are < M - b, this should ideally fit within, e.g., 64 bits

Fabian Kuhn Algorithms and Data Structures

Algorithm of Knuth, Morris, Pratt

« Can we always solve the problem in time 0(n)?

— in the worst case ...

Let’s again look at an example:

T |diulbla|d|ulbla|d|u|d|a|d|ulb|i|d|u|bla|d|u|b]|i

P |djulbla|d|u|b|i
diulbla|d|u|b]i
diulbla|d|u|b|i
diulbja|dju|b|i

diulbja|d|u|b]i

diu/bja|d|u|b|i
diubja|djulb
diubja|djulb

Fabian Kuhn Algorithms and Data Structures

Knuth-Morris-Pratt Algorithm

Idea:

* If, when testing the pattern P at some position t we find that P[t]
does not match with the corresponding character in the text, then
we know that the positions P[0 ...t — 1] were correct.

 This can be used in the remainder of the search

Longest part before the mismatch
that is also prefix of P.

15t position after mismatch

—

15t position that now has to
be checked.

Fabian Kuhn

Algorithms and Data Structures

Knuth-Morris-Pratt Algorithm

Precomputation: Array S of lengthm + 1

* S|i]: position in P, at which the search continues if when testing
for the pattern, we have a mismatch at position i of the pattern

« S[0]=-1, S[1]=0
« S[m]: position in P, at which one continues after P has been
found successfully.

Example:

B, L, A, B, D, A, B, D]
J 1) 2) @) 1J 2) 3) 4) 5) 3]

Fabian Kuhn Algorithms and Data Structures

Knuth-Morris-Pratt Algorithm

t=0; p=0

while t <n do
if T[t] ==

// t: position in text,

[p] then

if p==m—1 then

else

p=p+1;, t=t+1
// characters don’t match

else

if p == 0then
t=t+1

else
p

Fabian Kuhn

S[pl

p: position in pattern

// characters match
// pattern found
pattern found at position t—m+1
p=Sm]; t=t+1

Slp1~~

// mismatch at first character

Algorithms and Data Structures

P

p
[]
[]

21

Knuth-Morris-Pratt Algorithm: Example
Pattern: ABCABC S =1[-1,0,0,0,1,2,3]

Textt: ADABC DABCAGABVABCABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC
ABCABC

Fabian Kuhn Algorithms and Data Structures

Knuth-Morris-Pratt Alg.: Running Time

Running time without initialization of array S: 0(n)

t=0; p=0
while t <n do
if T[t] == P[p] then In each step,

if p==m—1 then
pattern found
p=Sm]; t=t+1

the position in the
text is incremented

else or
p=p+1; t=t+1 the window
else is moved
if p == 0then
t=t+1
else

p = S|p]

Fabian Kuhn Algorithms and Data Structures

Initialization

Precomputation of Array S:
e P=| A, B, D, A, B, L, A, B, D, A, B, D]
S=1[-1, 6, 06, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3]

* AtpositioniinS (fori € {2, ..., m}), we have

S[i] =min{Pl[i—k..i— 1] =P[0..k— 1]}

k<i

« S|i]: Length of the longest proper part of P[0 ...i — 1],
such that the part ends at position i — 1 and the same part is
also prefix of P.

Computation of S|i]:
e We will look at this next...

Fabian Kuhn Algorithms and Data Structures

Computation of S[i]

. S[0] = -1, S[1] =0 |

Ci>1 p I

\ J

S[i] S[i]

Casel:Pli—1] = P[S[i — 1]]

Sli —1]

: a

\ J L
Y

S[i — 1] S[i — 1]

» IfP[i—1] =P|S[i —1]], thenS[i] =S[i —1] + 1

Fabian Kuhn Algorithms and Data Structures

25

Computation of S[i]

Case 2: P[i — 1] = P|S[i — 1]

Sﬁﬁiﬂ] S[i —1] i—1 i
APh--L_l--i| !!!!!|‘
< S[S[i — 1]

* Longest possible prefix and suffix has length S[S[i — 1]] +1
— Testif P[i — 1] = S|S[i — 1]]?

— If yes, then we have S[i] = S[S[i — 1]] +1

— If no, then the next position we need to test is S [S[S[i — 1]]]

— eftc.

Fabian Kuhn Algorithms and Data Structures 26

Computation of S|i]|: Pseudocode

h=S[i—1] :
, Observation:
while h >0 do
if P[i—1] == P[h] then Slil=Sli-1]+1
Sli]l=h+1; h=-2
else
h = S|h]
if h==-1 then S[i|]=0

If S[i] = S[i — 1] + 1: 1 loop iteration

If S|i] < S[i—1]:

* Value of h decreases in each loop iteration

 Attheend, we have S[i]=h+ 1

* Number of loop iterations < Ah + 1 = S[i — 1] — S[i] + 2

Fabian Kuhn Algorithms and Data Structures

Computation of S[i]: Running Time

If S[i] = S[i — 1] + 1:
* ttloopiterations=1=S[i — 1] — S[i] + 2

Falls S[i] < S[i — 1]:
* #loopiterations< Ah+ 1 = S[i — 1] — S[i] + 2

Overall Running Time T(m):

T(m) < Z(S[i —1]=S[i] + 2)
=2

=2(m—1) + (S[1] = S[2] + S[2] — S[3] + S[3] — -
+ ... —Sm—-1]+ S|m —1] — S[m])

=2(m—1)+ S[1] — S|m] = 0(m)

Fabian Kuhn Algorithms and Data Structures

Knuth-Morris-Pratt Algorithm: Summary

Knuth-Morris-Pratt Algorithm:
* First computes the array S of length m + 1 in time O(m)

— only depends on the pattern P
— describes at each position of the pattern, where (in the pattern) we have to
continue after a mismatch

* With the help of S, all occurrences of the pattern P in the text T

can be found in time O (n).

— In each step, one can either increment the current search position in the
text T or one can move the position of the search window in T by at least

1 position to the right.

Overall Running Time: O(m + n) = 0(n)

Fabian Kuhn Algorithms and Data Structures

