
Algorithms and Data StructuresFabian Kuhn

Lecture 1

Sorting I

Algorithms and Data Structures
Conditional Course

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Problem Definition

• Input: Sequence of 𝑛 elements 𝑥1, … , 𝑥𝑛
• Ordering relation ≤ on elements

– Comparison operation that allows to compare two arbitrary elements

– Ex. 1: Sequence of numbers with the usual ≤ relation

– Ex. 2: Sequence of strings with lexicographic (alphabetical) order

• Output: Sorted sequence of the 𝑛 elements according to order ≤

• Example:

– Input: 15, 3, 27, 49, 23, 18, 6, 1, 31

– Output: 1, 3, 6, 15, 18, 23, 27, 31, 49

• Sorting is used in (almost) all larger programs!

2

Sorting

Algorithms and Data StructuresFabian Kuhn

Aufgabe: Sort array 𝐴 (z.B. 𝐴 = 15, 3, 27, 49, 23, 18, 6, 1, 31)

Simple Idea:

• Find smallest element und put it to the beginning

• Find smallest element among the remaining elements

• etc.

3

Algorithm for Sorting?

15 3 27 49 23 18 6 1 31

1 3 6 15 18 23 27 31 49

Algorithms and Data StructuresFabian Kuhn

SelectionSort ():

1. Find smallest element in array, swap it to 1st position

2. Find smallest element in rest, swap it to 2nd position

3. Find smallest element in rest, swap it to 3rd position

4. ...

4

Selection Sort Algorithm

15 3 27 49 23 18 6 1 31

Algorithms and Data StructuresFabian Kuhn

Input: Array 𝐴 of size 𝑛

• In the lecture and exercises, we officially support Python as a
programming language.

• To see an example, we will next show how one can implement the
discussed algorithm in Python.

5

Selection Sort in Detail

Algorithms and Data StructuresFabian Kuhn

Input: Array 𝐴 of size 𝑛

SelectionSort(A):

1: for i=0 to n-2 do

2: // find min in A[i..n-1]

3: minIdx = i

4: for j=i+1 to n-1 do

5: if A[j] < A[minIdx] then

6: minIdx = j

7: // swap A[i] with min of A[i..n-1]

8: tmp = A[i]

9: A[i] = A[minIdx]

10: A[minIdx] = tmp

6

Selection Sort: Pseudocode

Algorithms and Data StructuresFabian Kuhn

Algorithm Analysis:

1. Show that the algorithm is correct
– This requires a formal (mathematical) proof

– Usually this is not done completely formal

– We will see later how one can rigorously prove that an algorithm / computer
program does what it is supposed to do.

2. Analyze the running time and possibly other properties
– We will see next week how this is done

– For now, we will just measure the performance and try to get an impression
of how fast an algorithm is.

7

Selection Sort: Analysis
1. Algorithm computes correct output for

every possible input
2. Algorithm terminates (total correctness)

In this lecture, correctness will mostly be clear
intuitively and we will mostly focus on analyzing an
understanding the efficiency of algorithms.

Algorithms and Data StructuresFabian Kuhn

Properties after iteration 𝒊

a) A contains the same values
as in the beginning

b) A[0..i] is sorted correctly

c) “values in A[0..i]”
≤ “values in A[i+1..n-1]”

Proof by induction:

• Induction basis (𝒊 = 𝟎):

– a) follows because we only swap values

– b) trivial

– c) follows because after swapping in iteration 𝑖 = 0, A[0] contains the
smallest element of A

8

Selection Sort: Correctness

SelectionSort(A):
1: for i=0 to n-2 do
2: // find min in A[i..n-1]
3: minIdx = i
4: for j=i+1 to n-1 do
5: if A[j] < A[minIdx] then
6: minIdx = j
7: swap(A[i], A[minIdx])

Algorithms and Data StructuresFabian Kuhn

Properties after iteration 𝒊:

a) A contains the same values
as in the beginning

b) A[0..i] is sorted correctly

c) “values in A[0..i]”
≤ “values in A[i+1..n-1]”

Proof by induction:

• Induction step (𝒊 > 𝟎):

– Induction hypothesis ⟹ a) holds, A[0..i-1] is sorted correctly,
values in A[0..i-1] ≤ values in A[i..n-1]

– a) again follows because we only swap values

– Values in A[0..i-1] are not changed in iteration 𝑖, b) thus follows

– c) follows because A[i] contains smallest element of A[i..n-1]

9

Selection Sort: Correctness

SelectionSort(A):
1: for i=0 to n-2 do
2: // find min in A[i..n-1]
3: minIdx = i
4: for j=i+1 to n-1 do
5: if A[j] < A[minIdx] then
6: minIdx = j
7: swap(A[i], A[minIdx])

Algorithms and Data StructuresFabian Kuhn

In Python:

import time

…

start_time = time.time();

// code segment for which you want to measure
// the running time.

run_time = (time.time() – startTime) * 1000;

10

Measuring the Running Time

Algorithms and Data StructuresFabian Kuhn 11

Time Measurement Selection Sort

𝑛

ru
n

 t
im

e

Algorithms and Data StructuresFabian Kuhn 12

Time Measurement Selection Sort

ru
n

 t
im

e/
𝑛

𝑛

Algorithms and Data StructuresFabian Kuhn

Time Measurements Selection Sort:

• Seems to become slower over-proportionally when the size of the
arrow increases

• The time seems to grow roughly quadratically with the size of the
array.

– Array 2x the size  4 x so lange Laufzeit

– Array 3x the size  9 x so lange Laufzeit

– …

• We will see that the running time is indeed quadratic

– and how this is analyzed and expressed properly in a formal way

• Let us first think about other ways to sort...

13

Observations Selection Sort

Algorithms and Data StructuresFabian Kuhn

• Beginning (prefix) of array is sorted
– At the beginning only the first element, later more...

• Step-by-step, always insert the next element into the always
sorted part of the array.

Example:

14

Insertion Sort - Idea

15 3 27 49 23 18 6 1 3123 4923 27

Algorithms and Data StructuresFabian Kuhn

Input: Array 𝐴 of size 𝑛

InsertionSort(A):

1: for i=0 to n-2 do

2: // prefix A[0..i] is already sorted

3: pos = i+1

4: while (pos > 0) and (A[pos] < A[pos-1]) do

5: swap(A[pos], A[pos–1])

6: pos = pos - 1

15

Insertion Sort: Pseudocode

Algorithms and Data StructuresFabian Kuhn

1. Divide array into two parts
– left part: small elements, right part: large elements

2. Sort the two parts recursively!

QuickSort : Idea

23 4 56 38 19 8 12 93 7 15 25 13 42 76 10

4 8 12 7 15 13 10 23 56 38 19 93 25 42 76

4 8 7 10 12 15 13 56 38 93 42 7623 19 25

4 7 8 10 12 15 13 23 19 25 93 7656 38 42

4 7 8 10 12 13 15 19 23 25 76 9338 42 56

16

Algorithms and Data StructuresFabian Kuhn

Informal Description:

1. Divide array into left and right part such that

𝐞𝐥𝐞𝐦𝐞𝐧𝐭𝐬 𝐥𝐞𝐟𝐭 ≤ 𝐞𝐥𝐞𝐦𝐞𝐧𝐭𝐬 𝐫𝐢𝐠𝐡𝐭
– Remark: The elements in both parts do not need to be sorted

2. a) Sort elements in left part recursively
b) Sort elements in right part recursively
– Recursion: “solve a smaller sub problem of the same kind and with the

same method as the main problem”

• As soon as the sub problems become small enough such that
sorting becomes trivial, the recursion ends
– at the latest if the parts consist of a single element

17

QuickSort Algorithm

Algorithms and Data StructuresFabian Kuhn

• We have to partition such that
Elements in left part ≤ Elements in right part

• Idea: Choose a pivot 𝒙 that determines where to separate
– elements < 𝑥 have to go to the left

– elements > 𝑥 have to go to the right

– for elements = 𝑥 it doesn’t matter… (in the following to the left)

1. Increment 𝑙 as long as 𝐴 𝑙 ≤ pivot

2. Decrement 𝑟 as long as 𝐴 𝑟 > pivot

3. Swap 𝐴[𝑙] and 𝐴[𝑟]

18

QuickSort : Partitioning the Array

23 4 56 38 19 8 12 93 7 15 25 13 42 76 10

𝒍 𝒓

pivot = 23

Algorithms and Data StructuresFabian Kuhn

• We have to partition such that
Elements in left part ≤ Elements in right part

• Idea: Choose a pivot 𝒙 that determines where to separate
– elements < 𝑥 have to go to the left

– elements > 𝑥 have to go to the right

– for elements = 𝑥 it doesn’t matter… (in the following to the left)

• Algorithmus for divide (often also called partition):
– Idea: Iterate from left and from right over array

– If encounterinig an element that is on the correct side, one does not need
to do anything.

– If encountering an element that has to switch to the other side, the element
can be swapped with an element on the other side that has to switch to the
other side.

19

QuickSort : Partitioning the Array

Algorithms and Data StructuresFabian Kuhn

Algorithmus for partitioning (somewhat more formally):

• Task: Divide array 𝐴 of length 𝑛 according to pivot 𝑥
– Assumption: Elements ≤ 𝑥 go to the left, elements > 𝑥 go to the right

• General Procedure:
– Two variables 𝑙 and 𝑟 to iterate over the array from the left and the right

– Increment 𝑙 until 𝐴 𝑙 > 𝑥 (element has to go to the right)

– Dekrementiere 𝑟 bis 𝐴 𝑟 ≤ 𝑥 (element has to go to the left)

– Swap 𝐴[𝑙] and 𝐴[𝑟], increment 𝑙, decrement 𝑟 (𝑙 += 1, 𝑟 −= 1)

– Divide is done as soon as 𝑙 und 𝑟 meet

• You will need to figure out the details in the exercises…

20

QuickSort : Partitioning the Array

Algorithms and Data StructuresFabian Kuhn

• Choice of the pivot determines how large the two parts become
into which the array is divided…

• We will see: The algorithm is fastest, if the sizes of the two parts
are as equal as possible

Strategies to determine the pivot:

• Median would be ideal  cannot be found easily…
– We will see this later...

• A fixed element of the array (e.g., always the first of current part)
– can lead to a very uneven partition...

• An element at a random position (inside the current part)
– randomized QuickSort usually refers to exactly this strategy

– Usually works fairly well and gives roughly equal parts

• Median of three (or more) random elements
– somewhat more “expensive”, but somewhat more “equal” parts

21

QuickSort : Choice of Pivot

Algorithms and Data StructuresFabian Kuhn

Overview QuickSort:

Divide and Conquer:

• Widely used algorithm design principle:

1. Divide input into 2 or more smaller sub problems

2. Solve sub problems recursively

3. Combine solutions of sub problems to solution of original problem.

22

Divide and Conquer

𝑥

Divide

Sort recursively
(by using quicksort)

Algorithms and Data StructuresFabian Kuhn

• Another sorting algorithm that is based on the
divide-and-conquer principle.

23

MergeSort

23 4 56 38 19 8 12 93 7 15 25 13 42 76 10 33

7 15 25 13 42 76 10 3323 4 56 38 19 8 12 93

7 10 13 15 25 33 42 764 8 12 19 23 38 56 93

4 7 8 10 12 13 15 19 23 25 33 38 42 56 76 93

split array in the middle

sort halves recursively

merge sorted halves

Algorithms and Data StructuresFabian Kuhn

• Divide trivial for MergeSort

• Merge (combining the solutions) requires more work…

24

Overview MergeSort

Divide

Sort recursively
(by using mergesort)

Merge

Algorithms and Data StructuresFabian Kuhn

Merging of two sorted arrays:

• Given: sorted arrays 𝐴 und 𝐵 of lengths 𝑛 and 𝑚

• Output: sorted array 𝐶 containing the elements of 𝐴 and 𝐵

Merging Algorithm:

25

MergeSort: Merge Step

𝒊 𝒋

4 7 8 10 12 13 15 19 23 25 33 38 42 56 76 93

7 10 13 15 25 33 42 764 8 12 19 23 38 56 93

Algorithms and Data StructuresFabian Kuhn

Eingabe: Array 𝐴 of size 𝑛

MergeSort(A):

1: allocate array tmp to store intermediate results

2: MergeSortRecursive(A, 0, n, tmp)

MergeSortRecursive(A, start, end, tmp) // sort A[start..end-1]

1: if end – start > 1 then

2: middle = start + (end – start) / 2 // integer division

3: MergeSortRecursive(A, start, middle, tmp)

4: MergeSortRecursive(A, middle, end, tmp)

5: pos = start; i = start; j = middle

6: while pos < end do

7: if i < middle and (j >= right or A[i] < A[j]) then

8: tmp[pos] = A[i]; pos++; i++

9: else

10: tmp[pos] = A[j]; pos++; j++

11: for i = start to end-1 do A[i] = tmp[i]

26

MergeSort: Pseudocode

start end-1middle

Algorithms and Data StructuresFabian Kuhn

• We have seen 4 different sorting algorithms:

Simple Sorting Algorithms: Selection Sort and Insertion Sort

• Selection Sort seems to be quite slow. Our measurements suggest
that the running time is quadratic in the size 𝑛 of the array

• We will see that both algorithms indeed have quadratic run time.

Recursive Sorting Algorithms: QuickSort and MergeSort

• Both algorithm use the divide-and-conquer design principle:
The array of size 𝑛 is split into two smaller sub-arrays that are
afterwards solve recursively. The recursive solutions are then
combined to a solution of the original sorting problem.

• We will see that the added complexity of the two algorithms pays
off. Both algorithms are much faster than the two simple ones.

27

Summary Sorting Algorithms

