Algorithms and Data Structures
Conditional Course

Lecture 4

Hash Tables I:
Separate Chaining and Open Addressing

FREIBURG

Z
=)

Fabian Kuhn
Algorithms and Complexity

Abstract Data Types: Dictionary

Dictionary: (also: maps, associative arrays)

* holds a collection of elements where each element is represented
by a unique key

Operations:
* create . creates an empty dictionary

* D.insert(key, value) :inserts a new (key,value)-pair
— If there already is an entry with the same key, the old entry is replaced

* D.find(key) : returns entry with key key

— If there is such an entry (returns some default value otherwise)

e D.delete(key) . deletes entry with key key

Fabian Kuhn Algorithms and Data Structures

Dictionary so far

e So far, we saw 3 simple dictionary implementations

Linked List Array Array

(unsorted) (unsorted) (sorted)
insert o(1) o(1) O(n)
delete Oo(n) O(n) O(n)
find O(n) O(n) O(logn)

n: current number of elements in dictionary

 Often the most important operation: find
 Can we improve find even more?
 Can we make all operations fast?

Fabian Kuhn Algorithms and Data Structures

Direct Addressing

With an array, we can make everything fast,
...if the array is sufficiently large.

Assumption: Keys are integers between 0 and M — 1

None

None find(2) =2 “Value 1”
Value 1

None

insert(6, “Philipp”)

None

None

Philipp delete(4)

Value 3

None

00 N O i A W N R O

M-1 None

Fabian Kuhn Algorithms and Data Structures

Direct Addressing : Problems

1. Direct addressing requires too much space!

If each key can be an arbitrary int (32 bit):

We need an array of size 232 =~ 4 - 10°.

019

For 64 bit integers, we even need more than 1 entries ...

2. What if the keys are no integers?

Fabian Kuhn

Where do we store the (key,value)-pair (“Philipp”, “assistent”)?

Where do we store the key 3.14159?

Pythagoras: “Everything is number”

“Everything” can be stored as a sequence of bits:
Interpret bit sequence as integer

Makes the space problem even worse!

Algorithms and Data Structures

Hashing : Idea

Problem
 Huge space S of possible keys

* Number n of acutally used keys is much smaller

— We would like to use an array of size = n (resp. 0(n))...

* How can be map M keys to O(n) array positions?

Fabian Kuhn

/ M possible keys\ random mapping

n keys

/7

—
-

—>

Algorithms and Data Structures

— size O(n)

Hash Functions
Key Space S, |S| = M (all possible keys)

Array size m (= maximum #keys we want to store)

Hash Function
h:S - {0,...m—1}

* Maps keys of key space S to array positions

* h should be as close as possible to a random function
— all numbersin {0, ..., m — 1} mapped to from roughly the same #keys
— similar keys should be mapped to different positions

* h should be computable as fast as possible
— if possible in time 0(1)
— will be considered a basic operation in the following (cost = 1)

Fabian Kuhn Algorithms and Data Structures

Hash Tables

1. insert(kq, V1)
2. insert(k,,v5)

3. insert(ks,v3) Hash table
collision! ° None
_,/ 1 None
/ % 2 None
® h(k;) =3
k 3 -3 3 ki, v
~ o o QLO = 4 None
O o ® o W 5 None
6 None
7 (kZJ 7.72)
8 None
None

Fabian Kuhn Algorithms and Data Structures

Hash Tables : Collisions

Collision:
Two keys k4, k, collide if h(k,) = h(k,).

What should we do in case of a collision?

e (Can we choose hash function such that there are no collisions?

— This is only possible if we know the used keys before choosing the hash
function.
— Even then, choosing such a hash function can be very expensive.

* Use another hash function?
— One would need to choose a new hash function for every new collision

— A new hash function means that one needs to relocate all the already
inserted values in the hash table.

e Further ideas?

Fabian Kuhn Algorithms and Data Structures

Hash Tables : Collisions

Approaches for Dealing With Collisions
* Assumption: Keys k4 and k, collide

1. Store both (key,value) pairs at the same position

The hash table needs to have space to store multiple entries at each
position.

We do not want to just increase the size of the table
(then, we chould have just started with a larger table...)

Solution: Use linked lists

2. Store second key at a different position

Fabian Kuhn

Can for example be done with a second hash function
Problem: At the alternative position, there could again be a collision
There are multiple solutions

One solution: use many possible new positions
(One has to make sure that these positions are usually not used...)

Algorithms and Data Structures

Separate Chaining

* Each position of the hash table points to a linked list

Hash table

None

None

None

O

None

None

None

co N o un b W N — O

None

3
|

None

Fabian Kuhn

Space usage: O(m + n)

* tablesize m, no. of elements n

Algorithms and Data Structures 11

Runtime Hash Table Operations

To make it simple, first for the case without collisions...

create: 0(1)
insert: 0O(1)
find: 0(1)

delete: 0(1)

* Aslong as there are no collisions, hash tables are extremely fast
(if hash functions can be evaluated in constant time)

e We will see that this is also true with collisions...

Fabian Kuhn Algorithms and Data Structures

12

Runtime Separate Chaining

Now, let’s consider collisions...

create: 0(1)

insert: O(1 + length of list)

— |If one does not need to check if the key is already contained, insert can even
be always be done in time 0(1).

find: O(1 + length of list)

delete: O(1 + length of list)

 We therefore has to see how long the lists become.

Fabian Kuhn Algorithms and Data Structures

13

Separate Chaining : Worst Case

Worst case for separate chaining:

* All keys that appear have the same hash value

* Results in a linked list of length n

Fabian Kuhn

m

h(k,) = 3

y

00N OO AW N -, O

=
I
—_

Algorithms and Data Structures

None

1 n—1 Hashtabelle
* Probability for random h: (-)

None

None

None

None

None

None

None

None

14

Length of Linked Lists

* Cost of insert, find, and delete depends on the length of the
corresponding list

* How long do the lists become?
— Assumption: Size of hash table m, number of entries n
— Additional assumption: Hash function h behaves as a random function

* List lengths correspond to the following random experiment

m bins and n balls
e Each ball is thrown (independently) into a random bin

* Longest list = maximal no. of balls in the same bin

* Average list length = average no. of balls per bin

m bins, n balls = average #balls per bin: n/m

Fabian Kuhn Algorithms and Data Structures

Balls and Bins

FREIBURG

|

m bins

* Worst-case runtime = ©(max #balls per bin)
with high probability (whp) € O ("/m +'*™/\z 10g)
— forn<m:0 (log "loglog n)

* The longest list will have length @ (log " Nlog log n).

Fabian Kuhn Algorithms and Data Structures 16

Balls and Bins

FREIBURG

|

m bins

Expected runtime (for every key):

* Key in table:
— List length of a random entry
— Corresponds to #balls in bin of a random ball

 Key notin table:
— Length of a random list, i.e., #balls in a random bin

Fabian Kuhn Algorithms and Data Structures

17

Expected Runtime of Find
Load a of hash table:

@=
m

Cost of search:
e Search for key x that is not contained in hash table

h(x) is a uniformly random position
- expected list length = average list length =

Expected runtime: O(1 + «)

find (x)

time: 0(1) go through a random list: O (@)

Fabian Kuhn Algorithms and Data Structures 18

Expected Runtime of Find

Load a of hash table:

n
Q= —
m

Cost of search :
» Search for key x that is contained in hash table

How many keys y # x are in the list of x?

* The other keys are distributed randomly, the expected number
thus corresponds to the expected number of entries in a random
list of a hash table with n — 1 entries (all entries except x).

1
 Thisis: % < E = (& 2 expected list lengthof x <1+ «

Expected runtime: O(1 + «a)

Fabian Kuhn Algorithms and Data Structures

Runtimes Separate Chaining

create:
* runtime 0(1)

insert, find & delete:
* worst case: O(n)

e worst case with high probability (for random h): O (a +

* Expected runtime (for fixed key x): 0(1 +)

— holds for successful and unsuccessful searches
— if @ = 0(1) (i.e., hash table has size Q(n)), thisis 0(1)

* Hash tables are extremely efficient and
typically have O(1) runtime for all operations.

Fabian Kuhn Algorithms and Data Structures

logn

loglogn

)

20

Shorter List Lengths

FREIBURG

Idea:
* Use two hash functions h; and h,
* Store key x in the shorter of the two lists at h{ (x) and h, (x)

Balls and Bins: 00 0%,

e Put ball in bins with fewer balls

e For n balls, m bins: maximal no. of balls per bin (whp):
n/m+ O(loglogm)
* Known as “power of two choices”

Fabian Kuhn Algorithms and Data Structures 21

Hashing with Open Addressing

Goal:

» store everything directly in the hash table (in the array)
* open addressing = closed hashing

* no lists

Basic idea:
* In case of collisions, we need to have alternative positions
* Extend hash function to get
h:S x{0,..,m—1}-{0,..,m—1}
— Provides hash values h(x,0), h(x,1), h(x, 2), ..., h(x,m — 1)

— Forevery x € S, h(x, i) should cover all m values (for different i)

* Inserting a new element with key x:

— Try positions one after the other (until a free one is found)
h(x,0),h(x,1),h(x,2),...,h(x,m — 1)

Fabian Kuhn Algorithms and Data Structures

Linear Probing

Idea:

* If h(x) is occupied, try the subsequent position:

 Example:

Insert the following keys

Fabian Kuhn

x1, h(x) =3
X2, h(x3) =5
x3, h(x3) = 3
X4, h(x4) = 8
xs, h(xs) = 4
Xe, h(xg) = 6

Algorithms and Data Structures

h(x,i) = (h(x) +i) mod m

fori=0,...m—1

00 N o 1 A WN - O

3
L

23

Linear Probing

Advantages:

e verysimple to implement

* all array positions are considered as alternatives
* good cache locality

Disadvantages:

* Assoon as there are collisions, we get clusters.

e Clusters grow if hashing into one of the positions of a cluster.

* Clusters of size k in each step grow with probability (k + 2)/m
* The larger the clusters, the faster they grow!!

Fabian Kuhn Algorithms and Data Structures

Quadratic Probing

Idea:
* Choose sequence that does not lead to clusters:

h(x,i) = (h(x) + ¢;i + ¢;i%*) mod m

fori=0,...m—1

Advantages:
* does not create clusters of consecutive entries
* covers all m positions if parameters are chosen carefully

Disadvantages: h(x) = h(y) = h(x,i) = h(y,i)

* canstill lead to some kind of clusters

e problem: first hash values determines the whole sequence!

* Asymptotically at best as good as hashing with separate chaining

Fabian Kuhn Algorithms and Data Structures

Double Hashing

Idea: Use two hash functions

h(x,i) = (hy(x) +i-hy(x)) mod m

Advantages:

If mis a prime number, all m positions are covered
Probing function depends on x in two ways
Avoids drawbacks of linear and quadratic probing

Probability that two keys x and x’ generate the same sequence of
positions:

2

Ry (x) = hy(x') Ay(x) = hy(x') = prob = mi

Works well in practice!

Fabian Kuhn Algorithms and Data Structures

Open Addressing: Find Operation

Open Adressing:
* Key x can be at the following positions:
h(x,0),h(x,1),h(x,2),.., h(x, m—1)

Find Operation?
i=20
while i < m and H[h(x,i)] != None and H[h(x,1i)].key != x:
i+=1
if 1 < m:
return (H[h(x,1)].key == x)

hash table

When inserting x, x is inserted at position H|h(x,i)]| if H[h(x,j)] is
occupied forall j < i.

HIE H H E E FH
13

Fabian Kuhn Algorithms and Data Structures

27

Open Addressing: Delete Operation

Open Addressing:
* Key x can be at the following positions:
h(x,0),h(x,1),h(x,2),.., h(x, m—1)

Delete Operation

i=20

while i < m and H[h(x,i)] != None and H[h(x,1i)].key != x:
i+=1

if i < m and H[h(x,1)].key == x:
H[h(x,1i)] = deleted

When inserting x, x is inserted at position H|h(x,i)]| if H[h(x,j)] is
occupied forall j < i.

HEl B “HEE B B R B
()

Fabian Kuhn Algorithms and Data Structures

28

Open Addressing: Find Operation

Open Addressing:
* Key x can be at the following positions:
h(x,0),h(x,1),h(x,2),.., h(x, m—1)

Find Operation
i =0
while i < m and H[h(x,i)] != None and H[h(x,1i)].key != x:
i +=1
if 1 < m:
return (H[h(x,1)].key == x)
When inserting x, x is inserted at position H|h(x,i)]| if H[h(x,j)] is
occupied forall j < i.

HEl B “HEE B B R B
()

Fabian Kuhn Algorithms and Data Structures

29

Open Addressing : Summary

Open Addressing:

e All keys / values are stored directly in the array

— deleted entries have to be marked

* No lists necessary

— avoids the required overhead...

* Only fastif load

is not too large...

— but then, it is faster in practice than separate chaining...
e a > 1isimpossible!

— because there are only m positions available

Fabian Kuhn Algorithms and Data Structures

Summary Hashing

So far, we have seen:

efficient method to implement a dictionary

* All operations typically have runtime O(1)

— If the hash functions are random enough and if they can be evaluated in
constant time.

— The worst-case runtime is somewhat higher, in every application of hash
functions, there will be some more expensive operations.

We will see:
 How to choose a good hash function?
e What to do if the hash table becomes too small?

* Hashing can be implemented such that the find costis O(1) in
every case.

Fabian Kuhn Algorithms and Data Structures

Hashing in Python

Hash tables (dictionary):

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

 Generate new table: table = {}
* Insert (key,value) pair: table.update({key : value})
* Find key: key in table

table.get(key)
table.get(key, default value)

* Delete key: del table[key]
table.pop(key, default value)

Fabian Kuhn Algorithms and Data Structures

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

Hashing in Java

Java class HashMap:

Create new hash table (keys of type K, values of type V)
HashMap<K,V> table = new HashMap<K,V>();

Insert (key,value) pair (key of type K, value of type V)
table.put(key, value)

Find key

table.get(key)
table.containsKey(key)

Delete key

table.remove(key)

Similar class HashSet: manages only set of keys

Fabian Kuhn Algorithms and Data Structures

Hashing in C++

There is not one standard class

hash_map:

* Should be available in almost all C++ compilers

http://www.sgi.com/tech/stl/hash map.html

unordered_map:
e Since C++11 in Standard STL

http://www.cplusplus.com/reference/unordered map/unordered map/

Fabian Kuhn Algorithms and Data Structures

34

http://www.sgi.com/tech/stl/hash_map.html
http://www.cplusplus.com/reference/unordered_map/unordered_map/

Hashing in C++

C++ classes hash_map / unordered_ map:
* Neue Hashtab. erzeugen (Schlissel vom Typ K, Werte vom Typ V)

unordered_map<K,V> table;

e Einflgen von (key,value)-Paar (key vom Typ K, value vom Typ V)

table.insert(key, value)

e Suchen nach key

table[key] oder table.at(key)
table.count(key) >0

e Loschen von key

table.erase(key)

Fabian Kuhn Algorithms and Data Structures

Hashing in C++

Attention

* One can use hash_map / unordered_map in C++ like an array
— The array elements are the keys

* But:
T[key] inserts key, if it is not contained

T.at(key) throws an exception if key is not contained in map.

Fabian Kuhn Algorithms and Data Structures

