
Algorithms and Data StructuresFabian Kuhn

Lecture 4

Hash Tables I:
Separate Chaining and Open Addressing

Algorithms and Data Structures
Conditional Course

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Dictionary: (also: maps, associative arrays)

• holds a collection of elements where each element is represented
by a unique key

Operations:

• create : creates an empty dictionary

• D.insert(key, value) : inserts a new (key,value)-pair
– If there already is an entry with the same key, the old entry is replaced

• D.find(key) : returns entry with key key
– If there is such an entry (returns some default value otherwise)

• D.delete(key) : deletes entry with key key

2

Abstract Data Types: Dictionary

Algorithms and Data StructuresFabian Kuhn

• So far, we saw 3 simple dictionary implementations

• Often the most important operation: find

• Can we improve find even more?

• Can we make all operations fast?

3

Dictionary so far

𝑛: current number of elements in dictionary

Linked List
(unsorted)

Array
(unsorted)

Array
(sorted)

insert 𝑶(𝟏) 𝑶(𝟏) 𝑶(𝒏)

delete 𝑶(𝒏) 𝑶(𝒏) 𝑶(𝒏)

find 𝑶(𝒏) 𝑶(𝒏) 𝑶 𝐥𝐨𝐠𝒏

Algorithms and Data StructuresFabian Kuhn

With an array, we can make everything fast,

...if the array is sufficiently large.

Assumption: Keys are integers between 0 and 𝑀 − 1

find(2)  “Value 1”

insert(6, “Philipp”)

delete(4)

4

Direct Addressing

0 None

1 None

2 Value 1

3 None

4 Value 2

5 None

6 None

7 Value 3

8 None

⋮ ⋮

𝑀 − 1 None

Philipp

None

Algorithms and Data StructuresFabian Kuhn

1. Direct addressing requires too much space!

– If each key can be an arbitrary int (32 bit):

We need an array of size 232 ≈ 4 ⋅ 109.

For 64 bit integers, we even need more than 1019 entries …

2. What if the keys are no integers?

– Where do we store the (key,value)-pair (“Philipp”, “assistent”)?

– Where do we store the key 3.14159?

– Pythagoras: “Everything is number”

“Everything” can be stored as a sequence of bits:
Interpret bit sequence as integer

– Makes the space problem even worse!

5

Direct Addressing : Problems

Algorithms and Data StructuresFabian Kuhn

Problem

• Huge space 𝑆 of possible keys

• Number 𝑛 of acutally used keys is much smaller
– We would like to use an array of size ≈ 𝑛 (resp. 𝑂(𝑛))…

• How can be map 𝑀 keys to 𝑂 𝑛 array positions?

Hashing : Idea

𝑴 possible keys

𝑛 keys

random mapping

6

size 𝑂(𝑛)

Algorithms and Data StructuresFabian Kuhn

Key Space 𝑺, 𝑺 = 𝑴 (all possible keys)

Array size 𝒎 (≈ maximum #keys we want to store)

Hash Function
𝒉: 𝑺 → {𝟎,… ,𝒎 − 𝟏}

• Maps keys of key space 𝑆 to array positions

• ℎ should be as close as possible to a random function
– all numbers in {0, … ,𝑚 − 1} mapped to from roughly the same #keys

– similar keys should be mapped to different positions

• ℎ should be computable as fast as possible
– if possible in time 𝑂(1)

– will be considered a basic operation in the following (cost = 1)

7

Hash Functions

Algorithms and Data StructuresFabian Kuhn

1. insert(𝑘1, 𝑣1)

2. insert(𝑘2, 𝑣2)

3. insert(𝑘3, 𝑣3)

8

Hash Tables

0 None

1 None

2 None

3 None

4 None

5 None

6 None

7 None

8 None

⋮ ⋮

𝑚 − 1 None

Hash table

𝒌𝟏

(𝒌𝟏, 𝒗𝟏)

𝒌𝟐

𝒌𝟐, 𝒗𝟐

𝒌𝟑
ℎ 𝑘3 = 3

collision!

Algorithms and Data StructuresFabian Kuhn

Collision:

Two keys 𝑘1, 𝑘2 collide if ℎ 𝑘1 = ℎ(𝑘2).

What should we do in case of a collision?

• Can we choose hash function such that there are no collisions?
– This is only possible if we know the used keys before choosing the hash

function.

– Even then, choosing such a hash function can be very expensive.

• Use another hash function?
– One would need to choose a new hash function for every new collision

– A new hash function means that one needs to relocate all the already
inserted values in the hash table.

• Further ideas?

9

Hash Tables : Collisions

Algorithms and Data StructuresFabian Kuhn

Approaches for Dealing With Collisions

• Assumption: Keys 𝑘1 and 𝑘2 collide

1. Store both (key,value) pairs at the same position

– The hash table needs to have space to store multiple entries at each
position.

– We do not want to just increase the size of the table
(then, we chould have just started with a larger table…)

– Solution: Use linked lists

2. Store second key at a different position

– Can for example be done with a second hash function

– Problem: At the alternative position, there could again be a collision

– There are multiple solutions

– One solution: use many possible new positions
(One has to make sure that these positions are usually not used…)

10

Hash Tables : Collisions

Algorithms and Data StructuresFabian Kuhn

• Each position of the hash table points to a linked list

11

Separate Chaining

0 None

1 None

2 None

3

4 None

5 None

6 None

7

8 None

⋮ ⋮

𝑚 − 1 None

Hash table

𝒗𝟏 𝒗𝟑

𝒗𝟐

Space usage: 𝑶(𝒎+ 𝒏)

• table size 𝑚, no. of elements 𝑛

Algorithms and Data StructuresFabian Kuhn

To make it simple, first for the case without collisions…

create:𝑶 𝟏

insert: 𝑶(𝟏)

find: 𝑶(𝟏)

delete: 𝑶(𝟏)

• As long as there are no collisions, hash tables are extremely fast
(if hash functions can be evaluated in constant time)

• We will see that this is also true with collisions…

12

Runtime Hash Table Operations

Algorithms and Data StructuresFabian Kuhn

Now, let’s consider collisions…

create:𝑶 1

insert: 𝑶(1 + length of list)
– If one does not need to check if the key is already contained, insert can even

be always be done in time 𝑂 1 .

find: 𝑶(1 + length of list)

delete: 𝑶(1 + length of list)

• We therefore has to see how long the lists become.

13

Runtime Separate Chaining

Algorithms and Data StructuresFabian Kuhn

Worst case for separate chaining:

• All keys that appear have the same hash value

• Results in a linked list of length 𝑛

• Probability for random ℎ:

14

Separate Chaining : Worst Case

0 None

1 None

2 None

3

4 None

5 None

6 None

7 None

8 None

⋮ ⋮

m − 1 None

Hashtabelle

𝒌𝟐

𝒌𝟏
ℎ 𝑘1 = 3

𝟏

𝒎

𝒏−𝟏

Algorithms and Data StructuresFabian Kuhn

• Cost of insert, find, and delete depends on the length of the
corresponding list

• How long do the lists become?
– Assumption: Size of hash table 𝑚, number of entries 𝑛

– Additional assumption: Hash function ℎ behaves as a random function

• List lengths correspond to the following random experiment

𝒎 bins and 𝒏 balls

• Each ball is thrown (independently) into a random bin

• Longest list = maximal no. of balls in the same bin

• Average list length = average no. of balls per bin

𝑚 bins, 𝑛 balls  average #balls per bin: Τ𝑛 𝑚

15

Length of Linked Lists

Algorithms and Data StructuresFabian Kuhn

• Worst-case runtime = Θ max #balls per bin

with high probability (whp) ∈ 𝑂 Τ𝑛 𝑚 + ൗlog 𝑛
log log 𝑛

– for 𝑛 ≤ 𝑚 : 𝑂 ൗlog 𝑛
log log 𝑛

• The longest list will have length Θ ൗlog 𝑛
log log 𝑛 .

16

Balls and Bins

𝒏 balls

𝒎 bins

Algorithms and Data StructuresFabian Kuhn

Expected runtime (for every key):

• Key in table:
– List length of a random entry

– Corresponds to #balls in bin of a random ball

• Key not in table:
– Length of a random list, i.e., #balls in a random bin

17

Balls and Bins

𝒏 balls

𝒎 bins

Algorithms and Data StructuresFabian Kuhn

Load 𝜶 of hash table:

𝜶 ≔
𝒏

𝒎

Cost of search:

• Search for key 𝑥 that is not contained in hash table

ℎ(𝑥) is a uniformly random position
 expected list length = average list length = 𝛼

Expected runtime: 𝑶(𝟏 + 𝜶)

18

Expected Runtime of Find

find(𝑥)

ℎ(𝑥)

time: 𝑂(1) go through a random list: 𝑂(𝛼)

Algorithms and Data StructuresFabian Kuhn

Load 𝜶 of hash table:

𝜶 ≔
𝒏

𝒎

Cost of search :

• Search for key 𝑥 that is contained in hash table

How many keys 𝑦 ≠ 𝑥 are in the list of 𝑥?

• The other keys are distributed randomly, the expected number
thus corresponds to the expected number of entries in a random
list of a hash table with 𝑛 − 1 entries (all entries except 𝑥).

• This is:
𝑛−1

𝑚
<

𝑛

𝑚
= 𝛼  expected list length of 𝑥 < 1 + 𝛼

Expected runtime: 𝑶(𝟏 + 𝜶)

19

Expected Runtime of Find

Algorithms and Data StructuresFabian Kuhn

create:

• runtime 𝑂 1

insert, find & delete:

• worst case: 𝚯(𝒏)

• worst case with high probability (for random ℎ): 𝑶 𝜶 +
𝐥𝐨𝐠 𝒏

𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏

• Expected runtime (for fixed key 𝑥): 𝑶 𝟏 + 𝜶
– holds for successful and unsuccessful searches

– if 𝛼 = 𝑂 1 (i.e., hash table has size Ω 𝑛), this is 𝑂(1)

• Hash tables are extremely efficient and
typically have 𝑶 𝟏 runtime for all operations.

20

Runtimes Separate Chaining

Algorithms and Data StructuresFabian Kuhn

Idea:

• Use two hash functions ℎ1 and ℎ2
• Store key 𝑥 in the shorter of the two lists at ℎ1(𝑥) and ℎ2 𝑥

Balls and Bins:

• Put ball in bins with fewer balls

• For 𝑛 balls, 𝑚 bins: maximal no. of balls per bin (whp):
Τ𝒏 𝒎+𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠𝒎)

• Known as “power of two choices”

21

Shorter List Lengths

1. 2.

Algorithms and Data StructuresFabian Kuhn

Goal:

• store everything directly in the hash table (in the array)

• open addressing = closed hashing

• no lists

Basic idea:

• In case of collisions, we need to have alternative positions

• Extend hash function to get

ℎ: 𝑆 × 0,… ,𝑚 − 1 → {0,… ,𝑚 − 1}
– Provides hash values ℎ 𝑥, 0 , ℎ 𝑥, 1 , ℎ 𝑥, 2 , … , ℎ(𝑥,𝑚 − 1)

– For every 𝑥 ∈ 𝑆, ℎ(𝑥, 𝑖) should cover all 𝑚 values (for different 𝑖)

• Inserting a new element with key 𝑥:
– Try positions one after the other (until a free one is found)

ℎ 𝑥, 0 , ℎ 𝑥, 1 , ℎ 𝑥, 2 , … , ℎ(𝑥,𝑚 − 1)

22

Hashing with Open Addressing

Algorithms and Data StructuresFabian Kuhn

Idea:

• If ℎ 𝑥 is occupied, try the subsequent position:

𝒉 𝒙, 𝒊 = 𝒉 𝒙 + 𝒊 𝐦𝐨𝐝 𝒎

for 𝑖 = 0,… ,𝑚 − 1

• Example:
Insert the following keys
– 𝑥1, ℎ 𝑥1 = 3

– 𝑥2, ℎ 𝑥2 = 5

– 𝑥3, ℎ 𝑥3 = 3

– 𝑥4, ℎ 𝑥4 = 8

– 𝑥5, ℎ 𝑥5 = 4

– 𝑥6, ℎ 𝑥6 = 6

– …

23

Linear Probing

0

1

2

3

4

5

6

7

8

⋮ ⋮

𝑚 − 1

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟑

𝒙𝟒

𝒙𝟓
𝒙𝟓

𝒙𝟓 𝒙𝟔
𝒙𝟔

Algorithms and Data StructuresFabian Kuhn

Advantages:

• very simple to implement

• all array positions are considered as alternatives

• good cache locality

Disadvantages:

• As soon as there are collisions, we get clusters.

• Clusters grow if hashing into one of the positions of a cluster.

• Clusters of size 𝑘 in each step grow with probability Τ(𝑘 + 2) 𝑚

• The larger the clusters, the faster they grow!!

24

Linear Probing

Algorithms and Data StructuresFabian Kuhn

Idea:

• Choose sequence that does not lead to clusters:

𝒉 𝒙, 𝒊 = 𝒉 𝒙 + 𝒄𝟏𝒊 + 𝒄𝟐𝒊
𝟐 𝐦𝐨𝐝 𝒎

for 𝑖 = 0,… ,𝑚 − 1

Advantages:

• does not create clusters of consecutive entries

• covers all 𝑚 positions if parameters are chosen carefully

Disadvantages:

• can still lead to some kind of clusters

• problem: first hash values determines the whole sequence!

• Asymptotically at best as good as hashing with separate chaining

25

Quadratic Probing

ℎ 𝑥 = ℎ 𝑦 ⟹ ℎ 𝑥, 𝑖 = ℎ(𝑦, 𝑖)

Algorithms and Data StructuresFabian Kuhn

Idea: Use two hash functions

𝒉 𝒙, 𝒊 = 𝒉𝟏 𝒙 + 𝒊 ⋅ 𝒉𝟐 𝒙 𝐦𝐨𝐝 𝒎

Advantages:

• If m is a prime number, all 𝑚 positions are covered

• Probing function depends on 𝑥 in two ways

• Avoids drawbacks of linear and quadratic probing

• Probability that two keys 𝑥 and 𝑥′ generate the same sequence of
positions:

ℎ1 𝑥 = ℎ1 𝑥′ ∧ ℎ2 𝑥 = ℎ2 𝑥′ ⟹ prob =
1

𝑚2

• Works well in practice!

26

Double Hashing

Algorithms and Data StructuresFabian Kuhn

Open Adressing:

• Key 𝑥 can be at the following positions:

ℎ 𝑥, 0 , ℎ 𝑥, 1 , ℎ 𝑥, 2 ,… , ℎ 𝑥,𝑚 − 1

Find Operation?

i = 0
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:

i += 1
if i < m:

return (H[h(x,i)].key == x)

When inserting 𝑥, 𝑥 is inserted at position 𝐻 ℎ 𝑥, 𝑖 if 𝐻[ℎ 𝑥, 𝑗] is
occupied for all 𝑗 < 𝑖.

27

Open Addressing: Find Operation

hash table

𝑯

ℎ(𝑥, 1) ℎ(𝑥, 0)ℎ(𝑥, 2) ℎ(𝑥, 3)

𝒙

Algorithms and Data StructuresFabian Kuhn

Open Addressing:

• Key 𝑥 can be at the following positions:

ℎ 𝑥, 0 , ℎ 𝑥, 1 , ℎ 𝑥, 2 ,… , ℎ 𝑥,𝑚 − 1

Delete Operation

i = 0
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:

i += 1
if i < m and H[h(x,i)].key == x:

H[h(x,i)] = deleted

When inserting 𝑥, 𝑥 is inserted at position 𝐻 ℎ 𝑥, 𝑖 if 𝐻[ℎ 𝑥, 𝑗] is
occupied for all 𝑗 < 𝑖.

28

Open Addressing: Delete Operation

𝑯

ℎ(𝑥, 1) ℎ(𝑥, 0)ℎ(𝑥, 2) ℎ(𝑥, 3)

𝒙

Algorithms and Data StructuresFabian Kuhn

Open Addressing:

• Key 𝑥 can be at the following positions:

ℎ 𝑥, 0 , ℎ 𝑥, 1 , ℎ 𝑥, 2 ,… , ℎ 𝑥,𝑚 − 1

Find Operation

i = 0
while i < m and H[h(x,i)] != None and H[h(x,i)].key != x:

i += 1
if i < m:

return (H[h(x,i)].key == x)

When inserting 𝑥, 𝑥 is inserted at position 𝐻 ℎ 𝑥, 𝑖 if 𝐻[ℎ 𝑥, 𝑗] is
occupied for all 𝑗 < 𝑖.

29

Open Addressing: Find Operation

𝑯

ℎ(𝑥, 1) ℎ(𝑥, 0)ℎ(𝑥, 2) ℎ(𝑥, 3)

𝒙

Algorithms and Data StructuresFabian Kuhn

Open Addressing:

• All keys / values are stored directly in the array

– deleted entries have to be marked

• No lists necessary

– avoids the required overhead…

• Only fast if load

𝛼 =
𝑛

𝑚
is not too large…

– but then, it is faster in practice than separate chaining…

• 𝛼 > 1 is impossible!

– because there are only 𝑚 positions available

30

Open Addressing : Summary

Algorithms and Data StructuresFabian Kuhn

So far, we have seen:

efficient method to implement a dictionary

• All operations typically have runtime 𝑂 1
– If the hash functions are random enough and if they can be evaluated in

constant time.

– The worst-case runtime is somewhat higher, in every application of hash
functions, there will be some more expensive operations.

We will see:

• How to choose a good hash function?

• What to do if the hash table becomes too small?

• Hashing can be implemented such that the find cost is 𝑂(1) in
every case.

31

Summary Hashing

Algorithms and Data StructuresFabian Kuhn

Hash tables (dictionary):

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

• Generate new table: table = {}

• Insert (key,value) pair: table.update({key : value})

• Find key: key in table
table.get(key)
table.get(key, default_value)

• Delete key: del table[key]
table.pop(key, default_value)

32

Hashing in Python

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

Algorithms and Data StructuresFabian Kuhn

Java class HashMap:

• Create new hash table (keys of type K, values of type V)

HashMap<K,V> table = new HashMap<K,V>();

• Insert (key,value) pair (key of type K, value of type V)

table.put(key, value)

• Find key

table.get(key)
table.containsKey(key)

• Delete key

table.remove(key)

• Similar class HashSet: manages only set of keys

33

Hashing in Java

Algorithms and Data StructuresFabian Kuhn

There is not one standard class

hash_map:

• Should be available in almost all C++ compilers

http://www.sgi.com/tech/stl/hash_map.html

unordered_map:

• Since C++11 in Standard STL

http://www.cplusplus.com/reference/unordered_map/unordered_map/

34

Hashing in C++

http://www.sgi.com/tech/stl/hash_map.html
http://www.cplusplus.com/reference/unordered_map/unordered_map/

Algorithms and Data StructuresFabian Kuhn

C++ classes hash_map / unordered_ map:

• Neue Hashtab. erzeugen (Schlüssel vom Typ K, Werte vom Typ V)

unordered_map<K,V> table;

• Einfügen von (key,value)-Paar (key vom Typ K, value vom Typ V)

table.insert(key, value)

• Suchen nach key

table[key] oder table.at(key)
table.count(key) > 0

• Löschen von key

table.erase(key)

35

Hashing in C++

Algorithms and Data StructuresFabian Kuhn

Attention

• One can use hash_map / unordered_map in C++ like an array
– The array elements are the keys

• But:

T[key] inserts key, if it is not contained

T.at(key) throws an exception if key is not contained in map.

36

Hashing in C++

