
Algorithms and Data StructuresFabian Kuhn

Lecture 5

Hash Tables 2:
Hash Functions, Universal Hashing,
Rehash, Cuckoo Hashing

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Implements a Dictionary

• Manage a set of (key, value) pairs

• Main operations: insert, find, delete

Hash Tables

Key Space 𝓢

(𝑀 possbile keys)

hash function ℎ: 𝒮 → 0,… ,𝑚 − 1

2

hash table of
size 𝑚 = 𝑂(𝑛)

Algorithms and Data StructuresFabian Kuhn

We have seen so far:

efficient method to implement a dictionary

• All operations typically have running time 𝑂(1)
– If the hash functions are sufficiently random and can be evaluated

in time 𝑂(1).

– The worst-case running time is somewhat larger, in every application of
hash tables, there will be some more expensive operations.

We will now see:

• How to choose a good hash function?

• What to do if the hash table becomes too small?

• How to implement hashing such that find always requires
time 𝑂 1 .

3

Hash Tables

Algorithms and Data StructuresFabian Kuhn

How to choose a good hash functions?

What properties should a good hash function satisfy?

• In principle, it should have the same properties as a random
function:
– Mapping is uniformly random (all hash values appear equally often)

– Mapping of different keys is independent
(not clear what exactly this means for a deterministic function)

• Usually, these conditions cannot be verified.

• If something about the distribution of key values is known, this
knowledge can potentially be used.

• Luckily there are simple heuristics that work well in practice.

4

Good Hash Functions

Algorithms and Data StructuresFabian Kuhn

Choose hash function as
𝒉 𝒙 = 𝒙 𝐦𝐨𝐝 𝒎

• All values between 0 and 𝑚− 1 appear equally often
– as far as this is possible

Advantages:

• Very simple function

• A single division can be computed very fast

• Often works quite well, as long as 𝑚 is chosen carefully...

Remarks:

• If the keys are not integers, one can interpret the bit sequences
representing the keys as integers.

• Consecutive keys are mapped to consecutive hash values.

5

Division Method

Algorithms and Data StructuresFabian Kuhn

Choose hash function as
𝒉 𝒙 = 𝒙 𝐦𝐨𝐝 𝒎

Choice of Divisor 𝒎

• ℎ(𝑥) could be computed particularly fast if 𝑚 = 2𝑘

• This is however no good choice because then the hash value is just
the last 𝑘 bits of the key!
– The hash value should depend on all the bits.

• The best is to choose 𝑚 as a prime number.

• A prime number 𝑚 for which 𝑚 = 2𝑘 − 1 is also not ideal.

• Best: prime 𝑚 that is not too close to a power of 2.

6

Division Method

Algorithms and Data StructuresFabian Kuhn

𝑠 ⋅ 𝑥 =𝐴 ⋅ 𝑥 =

Choose hash function as
𝒉 𝒙 = 𝒎 ⋅ 𝑨𝒙 − 𝑨𝒙

• 𝐴 is a constant between 0 and 1

Remarks

• Here, one can choose 𝑚 = 2𝑘 (for an integer 𝑘)

• If integers are values 0 to 2𝑤 − 1, one typically picks an
integer 𝑠 ∈ {1,… , 2𝑤 − 1} and defines 𝐴 = 𝑠 ⋅ 2−𝑤

7

Multiplication Method

𝑠

𝑥

𝑤 bits

⋅

,

𝐴 =
𝑠

2𝑤

= 𝑨𝒙 − ⌊𝑨𝒙⌋= ⌊𝐴𝑥⌋

← 𝒌 bits →

𝒉(𝒙)

0 ≤ 𝐴𝑥 − 𝐴𝑥 < 1

Algorithms and Data StructuresFabian Kuhn

Choose hash function as
𝒉 𝒙 = 𝒎 ⋅ 𝑨𝒙 − 𝑨𝒙

• 𝐴 is a constant between 0 and 1

Remarks

• Here, one can choose 𝑚 = 2𝑘 (for an integer 𝑘)

• If integers are values 0 to 2𝑤 − 1, one typically picks an
integer 𝑠 ∈ {1,… , 2𝑤 − 1} and defines 𝐴 = 𝑠 ⋅ 2−𝑤

– In principle every 𝐴 works, in [Knuth; The Art of Comp. Progr. Vol. 3] it is
suggested to use

𝐴 ≈
5 − 1

2
= 0.6180339887…

8

Multiplication Method

Algorithms and Data StructuresFabian Kuhn

If ℎ is chosen randomly among all possible hash functions:

∀𝑥1, 𝑥2 ∶ Pr ℎ 𝑥1 = ℎ 𝑥2 =
1

𝑚

Problem:

• Such a function cannot be represented and implemented
efficiently.
– One essentially needs a table with an entry for each possible key

Idea:

• Choose a function at random from a smaller space
– E.g., use the multiplication method ℎ 𝑥 = 𝑚 ⋅ 𝐴𝑥 − 𝐴𝑥 with a

random parameter 𝐴

• Not quite as good as a uniformly random hash function, but if it is
done correctly, the ideas works  universal hashing

9

Random Hash Functions

and many other good properties …

Algorithms and Data StructuresFabian Kuhn

Hash functions: 𝒉 ∶ 𝓢 → {𝟎,… ,𝒎 − 𝟏}

Space of all possible hash functions

10

Universal Hashing : Idea

Key Space 𝓢

𝒮 = {0,… ,𝑀 − 1}

ℎ
Positions 0,… ,𝑚 − 1

possible hash functions
(no. functions: 𝑚𝑀)

subset

𝓗

Choose 𝓗 such that:

• ℋ is not too large and the functions in ℋ
are easy to implement

• A random function ℎ from ℋ behaves
similarly to a uniformly random function

• In particular regarding the collision prob.:

∀𝑥1, 𝑥2 ∶ Pr ℎ 𝑥1 = ℎ 𝑥2 ≈
1

𝑚

Algorithms and Data StructuresFabian Kuhn

Definition:

• Let 𝒮 be the set of possible keys and 𝑚 be the size of the hash table

• Let ℋ be a set of hash functions 𝒮 → {0,… ,𝑚 − 1}

• With other words, if ℎ is chosen at random from ℋ, we have

∀𝑥, 𝑦 ∈ 𝑆 ∶ 𝑥 ≠ 𝑦 ⟹ Pr ℎ 𝑥 = ℎ 𝑦 ≤
𝑐

𝑚

• Remark:

The set ℋ of all 𝑚𝑀 possible hash functions is 1-universal.

11

Universal Hashing : Definition

The set 𝓗 is called 𝒄-universal if

∀𝒙, 𝒚 ∈ 𝓢 ∶ 𝒙 ≠ 𝒚 ⟹ 𝒉 ∈ 𝓗 ∶ 𝒉 𝒙 = 𝒉 𝒚 ≤ 𝒄 ⋅
𝓗

𝒎
.

Algorithms and Data StructuresFabian Kuhn

Theorem:

• Let ℋ be a 𝑐-universal set of hash functions 𝒮 → {0,… ,𝑚 − 1}

• Let 𝑋 ⊂ 𝒮 be an arbitrary set of keys

• Let ℎ ∈ ℋ be a random hash function from the set ℋ

• For a given 𝑥 ∈ 𝑋, let

𝐵𝑥 ≔ 𝑦 ∈ 𝑋 ∶ ℎ 𝑦 = ℎ(𝑥)

• In expectation, 𝐵𝑥 has size

Therefore:

• In expectation, all lists are short!

12

Universal Hashing : List Lengths

< 1 + 𝑐 ⋅
𝑋

𝑚

Algorithms and Data StructuresFabian Kuhn

Negative Example:

• Parametrized variant of the division method

ℋ = ℎ ∶ 𝑥 → 𝑎 ⋅ 𝑥 mod 𝑚 for 𝑎 ∈ {1,… ,𝑀 − 1}

• Counterexample: choose an arbitrary 𝑥 and choose 𝑦 = 𝑥 +𝑚

– ℎ 𝑥 = 𝑎 ⋅ 𝑥 mod 𝑚

– ℎ 𝑦 = 𝑎 ⋅ 𝑥 + 𝑚 mod 𝑚 = 𝑎 ⋅ 𝑥 + 𝑎 ⋅ 𝑚 mod 𝑚 = 𝑎 ⋅ 𝑥 mod 𝑚

13

Universal Hashing : Example I

The set 𝓗 is called 𝒄-universal if

∀𝒙, 𝒚 ∈ 𝓢 ∶ 𝒙 ≠ 𝒚 ⟹ 𝒉 ∈ 𝓗 ∶ 𝒉 𝒙 = 𝒉 𝒚 ≤ 𝒄 ⋅
𝓗

𝒎
.

Algorithms and Data StructuresFabian Kuhn

Positive Example 1:

• 𝑚 arbitrary, 𝑝: prime such that 𝑝 > 𝑀

ℋ = ℎ ∶ 𝑥 → 𝑎 ⋅ 𝑥 + 𝑏 mod 𝑝 mod 𝑚 for 𝑎, 𝑏 ∈ 𝒮, 𝑎 ≠ 0

• The set is 𝑐-universal für 𝑐 ≈ 1 if 𝑝 ≈ 𝑀

• For 𝑥, 𝑦, we have ℎ 𝑥 = ℎ 𝑦 , if for some 𝑖 ∈ ℤ:

𝑎𝑥 + 𝑏 mod 𝑝 = 𝑎𝑦 + 𝑏 mod 𝑝 + 𝑖 ⋅ 𝑚

• For every 𝑥 and 𝑦 and for every 𝑏, for each possible value of 𝑖, there
is only one value of 𝑎, for which 𝑥 and 𝑦 collide.

14

Universal Hashing : Example II

The set 𝓗 is called 𝒄-universal if

∀𝒙, 𝒚 ∈ 𝓢 ∶ 𝒙 ≠ 𝒚 ⟹ 𝒉 ∈ 𝓗 ∶ 𝒉 𝒙 = 𝒉 𝒚 ≤ 𝒄 ⋅
𝓗

𝒎
.

𝑎 ≡ 𝑖 ⋅ 𝑚 ⋅ 𝑥 − 𝑦 −1 mod 𝑝

holds for at most

2 ⋅
𝑝 − 1

𝑚
+ 1

diff. values of 𝑖

Algorithms and Data StructuresFabian Kuhn

Positive Example 2:

• 𝑚 prime, 𝒌 = ⌊𝐥𝐨𝐠𝒎𝑴⌋, parameter 𝑎 ∈ 𝒮 = {0,… ,𝑀 − 1}

• Consider parameter 𝑎 and key 𝑥 in basis-𝑚 representation:

𝑎 = 𝑎0 + 𝑎1 ⋅ 𝑚 + 𝑎2 ⋅ 𝑚
2 +⋯+ 𝑎𝑘 ⋅ 𝑚

𝑘

𝑥 = 𝑥0 + 𝑥1 ⋅ 𝑚 + 𝑥2 ⋅ 𝑚
2 +⋯+ 𝑥𝑘 ⋅ 𝑚

𝑘

ℋ = ℎ ∶ 𝑥 → ෍

𝑖=0

𝒌

𝑎𝑖 ⋅ 𝑥𝑖 mod 𝑚 for 𝑎𝑖 ∈ 0,… ,𝑚 − 1

• The set ℋ is 1-universal
15

Universal Hashing : Example III

The set 𝓗 is called 𝒄-universal if

∀𝒙, 𝒚 ∈ 𝓢 ∶ 𝒙 ≠ 𝒚 ⟹ 𝒉 ∈ 𝓗 ∶ 𝒉 𝒙 = 𝒉 𝒚 ≤ 𝒄 ⋅
𝓗

𝒎
.

𝑎𝑖 , 𝑥𝑖 ∈ {0, … ,𝑚 − 1}

Algorithms and Data StructuresFabian Kuhn

• If the hash function is chosen at random from a universal set of
hash functions, the collision probability for two keys 𝑥 and 𝑦 is
equal as for a random hash function.

• There are simple and efficient constructions of universal sets of
hash functions.

One can take this further:

• Pairwise independent set of hash functions

∀𝑥, 𝑦 ∈ 𝒮, ∀𝑎, 𝑏 ∈ ℤ𝑚: Pr ℎ 𝑥 = 𝑎 ∧ ℎ 𝑦 = 𝑏 =
1

𝑚2

– A random function from such a set behaves exactly the same as a random
function for every pair of keys 𝑥, 𝑦 (not just regarding collisions)

• 𝑘-independent set of hash functions
– A random function from such a set behaves exactly the same as a random

hash function for every set of 𝑘 different keys.
16

Universal Hashing : Summary

Algorithms and Data StructuresFabian Kuhn

Remember:

• Load of a hash table: 𝛼 = Τ𝑛 𝑚

What if a hash table becomes too full?

• Open Addressing:

– 𝛼 > 1 impossible, for 𝛼 → 1 very inefficient

– If one inserts and deletes a lot, the table also becomes inefficient
(because of the deleted marks)

• Chaining: Complexity grows linearly with 𝛼

What it the chosen hash function behaves badly?

17

Rehash

Rehash:
• Create a new, larger hash table, choose a new hash function ℎ′.
• Insert all existing (key, value) pairs.

Algorithms and Data StructuresFabian Kuhn

A rehash is expensive!

Cost (time):

• Θ(𝑚 + 𝑛) : grows linearly in the number of inserted values and
in the length of the old hash table

– typically, this is just Θ(𝑛)

• If done correctly, a rehash is rarely necessary:
– good hash function (e.g., from a universal set)

– good choice of table sizes:

with each rehash, the table size should be roughtly doubled

old size 𝑚 ⟹ new size ≈ 2𝑚

– With doubling, one gets constant time per hash table operation on average
 amortisierte Analyse

18

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

Analysis Doubling Strategy

• We make a few simplifying assumptions:
– Up to load 𝛼0 (e.g., 𝛼0 = Τ1 2) all hash table operations cost ≤ 𝑐.

– At load 𝛼0, we double the table size:
old size 𝑚, new size 2𝑚, cost ≤ 𝑐 ⋅ 𝑚.

– At the beginning, the table has size 𝑚0 ∈ 𝑂(1).

– The table size is never decreased…

• How large is the cost for rehashing, compared to the total cost of
all other operations?

19

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

Overall Cost

• We assume that the table size is 𝑚 = 𝑚0 ⋅ 2
𝑘 for 𝑘 ≥ 1

– i.e., up to now, we have done 𝑘 ≥ 1 rehash steps

– remark: for 𝑘 = 0 the rehash cost is still 0.

• The overall rehash cost is

≤ ෍

𝑖=0

𝑘−1

𝑐 ⋅ 𝑚0 ⋅ 2
𝑖 = 𝑐 ⋅ 𝑚0 ⋅ 2𝑘 − 1 ≤ 𝑐 ⋅ 𝑚

• Overall cost for the remaining operations
– For the rehash from size Τ𝑚 2 to size 𝑚 we had ≥ 𝛼0 ⋅ Τ𝑚 2 entries in the table.

– Number of hash table operations (without rehash)

≥
𝛼0
2
⋅ 𝑚

20

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

• The overall rehash cost is

≤ ෍

𝑖=0

𝑘−1

𝑐 ⋅ 𝑚0 ⋅ 2
𝑖 = 𝑐 ⋅ 𝑚0 ⋅ 2𝑘 − 1 ≤ 𝑐 ⋅ 𝑚

• Number of hash table operations:

#OP ≥
𝛼0
2
⋅ 𝑚

• Average cost per operation

#𝐎𝐏 ⋅ 𝒄 + 𝐑𝐞𝐡𝐚𝐬𝐡_𝐊𝐨𝐬𝐭𝐞𝐧

#𝐎𝐏
≤ 𝒄 +

𝟐𝒄

𝜶𝟎
∈ 𝑶(𝟏)

• On average, the cost per operation is constant
– also for worst-case inputs (as long as the simplifying assumptions hold)

– average cost per operation = amortized cost per operation

21

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

Algorithm analysis so far:

• worst case, best case, average case

Now additionaly amortized worst case:

• 𝑛 operations 𝑜1, … , 𝑜𝑛 on some data structure, 𝑡𝑖: cost of 𝑜𝑖
• Costs can be very different from each other (z.B. 𝑡𝑖 ∈ [1, 𝑐 ⋅ 𝑖])

• Amortized cost per operation

𝑇

𝑛
, where 𝑇 =෍

𝑖=1

𝑛

𝑡𝑖

• Amortized cost: Average cost per operation in a worst-case
execution

– amortized worst case ≠ average case!

• More on this in the algorithm theory lecture

22

Amortized Analysis

Algorithms and Data StructuresFabian Kuhn

• If one only increases the table size and assumes that for small
load, hash table operations require time 𝑂 1 , the amortized cost
(time) per operation is 𝑂(1).

• Analysis also works for a random hash function from a universal
set of hash functions (with high probability)
– Then, for small load, hash table operations with high probability have

amortized cost 𝑂(1).

• Analysis can be adapted for rehashs for decreasing the table size
– And also for cases where a rehash is necessary because of a lot of delete

operations (and the resulting deleted marks)

• In a similar way, one can build dynamic-size arrays from fixed-size
arrays
– All array operations have 𝑂(1) amortized running time.

– ADT only allows increasing/decreasing size in 1-element steps at the end.

23

Amortized Analysis Rehash

Algorithms and Data StructuresFabian Kuhn

Hashing Summary:

• Efficient dictionary data structure

• Operations in expectation (usually) require 𝑂 1 time.

• Hashing with separate chaining can be implemented such that
insert always has running time 𝑂 1 .

• Can we also guarantee running time 𝑶(𝟏) for find?
– if at the same time insert is only 𝑂 1 time in expectation…

Cuckoo Hashing Idea:

• Open addressing
– At each table position, there is only space for one entry.

• Two hash functions ℎ1 and ℎ2
• A key 𝑥 is always stored at position ℎ1(𝑥) or ℎ2(𝑥)

– If both positions are occupied when inserting 𝑥, one has to reorganize…

24

Cuckoo Hashing Idea

Algorithms and Data StructuresFabian Kuhn

Inserting a key 𝒙:

• 𝑥 is always inserted at position ℎ1 𝑥

• If there already is another key 𝑦 at position ℎ1(𝑥):
– Remove 𝑦 from this position (thus the name cuckoo hashing)

– 𝑦 has to be inserted at its alternative position
(if it was at pos. ℎ1(𝑦), it has to go to pos. ℎ2(𝑦), otherwise to pos. ℎ1(𝑦))

– If there is already a key 𝑧 at this position, remove 𝑧 from there and place it
at its alternative position

– And so on …

Find / Delete:

• If 𝑥 is in the table, it is at position ℎ1(𝑥) or ℎ2(𝑥)

• For delete: Mark table entry as empty!

• Both operations always require time 𝑂(1) !

25

Cuckoo Hashing

Algorithms and Data StructuresFabian Kuhn

Table size: 𝑚 = 5

Hash functions: ℎ1 𝑥 = 𝑥 mod 5, ℎ2 𝑥 = 2𝑥 − 1 mod 5

Insert keys 17, 28, 7, 10, 20:

26

Cuckoo Hashing Example

0 1 2 3 4

𝑯

17 28 7 10 20Keys:

Algorithms and Data StructuresFabian Kuhn

• When inserting, we can get a cycle

– 𝑥 replaces 𝑦1
– 𝑦1 replaces 𝑦2
– 𝑦2 replaces 𝑦3
– …

– 𝑦ℓ−1 replaces 𝑦ℓ
– 𝑦ℓ replaces 𝑥 or 𝑦𝑖 for some 𝑖 < ℓ

• Or it can happen that for some key ℎ1 𝑦𝑖 = ℎ2(𝑦𝑖)

• If this happens, we can also try the alternative position for 𝑥, but
there the same can happen again…

• In this case, one chooses new hash functions and performs a
rehash (usually with a larger table).

27

Cuckoo Hashing : Cycles

Algorithms and Data StructuresFabian Kuhn

How to choose the two hash functions?

• They should be as “independent” as possible…

• Few keys 𝑥 for which ℎ1 𝑥 = ℎ2(𝑥)

• A good choice:

two independent, random functions from a universal set

• Then, one can show that cycles only occur rarely
as long as 𝑛 ≤ 𝑚/2.

• As soon as the table is half full (𝑛 ≥ 𝑚/2), one should do a rehash
and switch to a table of twice the size.

28

Cuckoo Hashing : Hash Functions

Algorithms and Data StructuresFabian Kuhn

Find / Delete:

• Always running time 𝑂 1

• One only has to inspect the two positions ℎ1(𝑥) and ℎ2(𝑥).

• This is the big advantage of cuckoo hashing.

Insert:

• One can show that on average, it also requires time 𝑂 1

• If the table is not filled to more than half its size

• Doubling the table size when rehashing leads to constant average
running time per operation!

29

Cuckoo Hashing : Running Time

Algorithms and Data StructuresFabian Kuhn

Efficient method to implement a dictionary

Handling of Collisions

• Hashing with separate chaining
– simple, very flexible, with 2 hash functions, the list lengths can be restricted to
𝑂 log log 𝑛 with high probability

• Open Addressing
– different possibilities, more efficient in practice

– possible to implement such that find has worst-case time 𝑂 1 .

– load 𝛼 > 1 impossible, if 𝛼 becomes large, one has to do a rehash

Hash Functions

• There are simple strategies to obtain good hash functions.
– In practice, often, a single fixed hash function is used.

Rehash

• If a hash table becomes too full, one has to reset the whole table
– This can be done such that the average running time per operation is still

constant.

30

Hashing Summary

