
Algorithms and Data StructuresFabian Kuhn

Lecture 9

Graph Algorithms II:
Minimum Spanning Trees

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Node Set 𝑽, typically 𝑛 ≔ |𝑉| (alternatively, node = vertex)

Edge Set 𝑬, typically 𝑚 ≔ 𝐸

• Undirected graph: 𝐸 ⊆ 𝑢, 𝑣 ∶ 𝑢, 𝑣 ∈ 𝑉

• directed graph: 𝐸 ⊆ 𝑉 × 𝑉

Examples:

2

Graphs

1

2

3

5
4

1

2

3

5
4

𝑉 = 1, 2, 3, 4, 5

𝐸 = 1,2 , 1,4 , 1,5 , 2,3 , 3,4 , 3,5 , {4,5}

𝑉 = 1, 2, 3, 4, 5
𝐸 = 1,2 , 1,5 , 2,3 , 3,4 , 3,4 , 3,5 , 4,1 , (5,4)

In this lecture: only undirected graphs

Algorithms and Data StructuresFabian Kuhn

• Considered as undirected graphs (with 𝑛 nodes)…

Tree:

• Connected undirected graph without cycles
– A cycle-free not necessarily connected (undirected) graph is called a forest

– Number of edges: 𝑛 − 1 (each edge reduces the no. of components by 1)

Equivalent Definitions:

• minimal connected graph

• maximal cycle-free graph

• a unique path between every pair of nodes

• connected graph with 𝑛 − 1 edges

3

Trees

Algorithms and Data StructuresFabian Kuhn

Given: Connected, undirected graph 𝐺 = 𝑉, 𝐸

Spanning Tree 𝑻 = 𝑽, 𝑬𝑻 : subgraph (𝐸𝑇 ⊆ 𝐸)

• 𝑇 is a tree that contains all nodes of 𝐺

• Alternatively: 𝑇 is a tree with 𝑛 − 1 edges from 𝐸

4

Spanning Tree

1 2

3 4

5

6

8

7

Algorithms and Data StructuresFabian Kuhn

Given: Connected, undirected graph 𝐺 = 𝑉, 𝐸,𝑤
with edge weights 𝑤 ∶ 𝐸 → ℝ

Minimum Spanning Tree 𝑻 = 𝑽, 𝑬𝑻 :

• A spanning tree with smallest total weight

5

Minimum Spanning Tree (MST)

1 2

3 4

5

6

8

7

1

3

6

8
9

1

15

2

9 7

6

3

Algorithms and Data StructuresFabian Kuhn

Goal: Given an undirected, connected graph 𝐺, find a spanning
tree with minimum total weight.

• Minimum Spanning Tree = MST

• A fundamental optimization problem on graphs
– one of many optimization problems on graphs

• Often appears as a subproblem

• MSTs are however also interesting by themselves
– For example in the context of networks

– A minimum spanning tree is the cheapest way of connecting all the nodes of
a network.

6

Minimum Spanning Trees

Algorithms and Data StructuresFabian Kuhn

Idea: Start with an empty edge set and add edges step-by-step

until we have a spanning tree.

• In the beginning, we have 𝐴 = ∅

• Afterwards, we always add an edge that preserves the invariant.

• We call an edge for which we can be sure that we can add the

edge to 𝐴 (and preserve the invariant), a safe edge for 𝐴

• How one can find safe edges, we will see…

7

Generic MST Algorithm

Invariant:
At all times, the algorithm has an edge set 𝐴, such that 𝐴 is
the subset of the edges of a minimum spanning tree.

Algorithms and Data StructuresFabian Kuhn

Generic MST Algorithm:

𝐴 = ∅

while 𝐴 is not a spanning tree do

Find a safe edge 𝑢, 𝑣 for 𝐴

𝐴 = 𝐴 ∪ 𝑢, 𝑣

return 𝐴

• Invariant is a valid loop invariant

• Invariant + condition for exiting the loop ⟹𝐴 is an MST!

8

Generic MST Algorithm

Invariant:
At all times, the algorithm has an edge set 𝐴, such that 𝐴 is
the subset of the edges of a minimum spanning tree.

Algorithms and Data StructuresFabian Kuhn

• Invariant  there is always a safe edge
– 𝐴 is the subset of an MST and can therefore be extended to an MST

• We first need some terminology …

Cut 𝑺, 𝑽 ∖ 𝑺 , 𝑺 ≠ ∅, 𝑺 ≠ 𝑽:

• An edge 𝑢, 𝑣 ∈ 𝐸 is a cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 if one node of the
edge is in 𝑆 and one node of the edge is in 𝑉 ∖ 𝑆.

• We call an edge 𝑢, 𝑣 a light cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 if the edge
has the smallest weight among all cut edges.

𝑽 ∖ 𝑺𝑺

9

How can we find safe edges?

𝟑

𝟑

𝟕

𝟒

Algorithms and Data StructuresFabian Kuhn

Assumption:

• 𝐺 = 𝑉, 𝐸,𝑤 is a connected, undir. graph with edge weights 𝑤 𝑒

• 𝐴 is a subset of the edges of an MST

Theorem: Let 𝑆, 𝑉 ∖ 𝑆 be a cut s.t. 𝐴 does not contain any cut edges
and let 𝑢, 𝑣 , 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ∖ 𝑆 be a light cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 .
Then, 𝑢, 𝑣 is a safe edge for 𝐴.

10

Safe Edges

1 2

3 4

5

6

8

7

1

3

6

8
9

1

15

2

9 7

6

3

𝑨

𝑺 𝑽 ∖ 𝑺 𝑨: edge set that is subset of
the edges of an MST.

𝑺, 𝑽 ∖ 𝑺 : cut for which no edge
in 𝐴 is a cut edge.

Light cut edges are safe
edges for 𝐴 and can thus
be added to 𝐴.

Algorithms and Data StructuresFabian Kuhn

Theorem: A connected (undirected) graph 𝐺 = (𝑉, 𝐸)
with 𝑛 nodes and 𝑛 − 1 edges is a tree.

Proof: By induction on 𝑛

• Induction Base (𝑛 = 1):

• Induction Step (𝑛 − 1 → 𝑛):
– A graph with 𝑛 nodes and 𝑛 − 1 edges has a node of degree ≤ 1

avgdeg 𝐺 =
1

𝑛
⋅ ෍

𝑣∈𝑉

deg 𝑣 =
2 𝐸

𝑛
=
2𝑛 − 2

𝑛
< 2

– If 𝐺 is connected : ∃𝑣 ∈ 𝑉 ∶ deg 𝑣 = 1

Graph 𝐺′ ≔ “𝐺 without 𝑣” is a connected
graph with 𝑛 − 1 nodes and 𝑛 − 2 edges.

Induction Hypothesis: 𝐺′ is a tree.

Then, also 𝐺 must be a tree.

11

Kurzer Exkurs zu Bäumen

𝐺′ ≔ “𝐺 without 𝑣”

𝑣

Algorithms and Data StructuresFabian Kuhn

Theorem: Let 𝑆, 𝑉 ∖ 𝑆 be a cut s.t. 𝐴 does not contain any cut edges and
let 𝑢, 𝑣 , 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ∖ 𝑆 be a light cut edge w.r.t. 𝑆, 𝑉 ∖ 𝑆 . Then, 𝑢, 𝑣
is a safe edge for 𝐴.

Proof: Consider an MST 𝑇 that contains the edges in 𝐴.

12

Sichere Kanten

𝒗𝒖

𝑻

𝑺 𝑽 ∖ 𝑺

𝑨 𝒆

𝒇𝟏

𝒇𝟐

𝒇𝟑

Cut edge 𝒇𝒊 on 𝒖-𝒗 path

• 𝑇′ ≔ 𝑉,𝐸 ∖ 𝑓𝑖 ∪ 𝑒
⟹ 𝑇′ is connected.

• 𝑇′ has 𝑛 − 1 edges
⟹𝑇′ is a tree.

• 𝑒 light edge
⟹𝑤 𝑒 ≤ 𝑤 𝑓𝑖

• 𝑤 𝑇′ ≤ 𝑤 𝑇
⟹𝑇′ is an MST that
contains 𝐴 and 𝑒.

Algorithms and Data StructuresFabian Kuhn

• Should be called Jarník’s algorithm
– was discovered by Prim in 1957 and published by Jarník already in 1930

• A possible implementation of the generic algorithm

𝐴 = ∅
while 𝐴 is not a spanning tree do

Find a safe edge 𝑢, 𝑣 for 𝐴

𝐴 = 𝐴 ∪ 𝑢, 𝑣

return 𝐴

• Idea: 𝐴 is always a connected subtree
– Start with an arbitrary node 𝑠 ∈ 𝑉

– Tree grows from 𝑠 by always adding a light edge of the cut that is induced by
the set of nodes that are already connected by the edges in 𝐴.

13

Prim’s MST Algorithm

Algorithms and Data StructuresFabian Kuhn 14

Prim’s MST Algorithm: Example

3

14
4

6

1

10

13

23

21

31

8
25

19

1918

17

16

199

12

7 2
28

Algorithms and Data StructuresFabian Kuhn

We need to show that 𝑒 is a safe edge for 𝐴.

• Follows directely because
– 𝑆 always exactly contains the nodes that are contained in some edge of 𝐴.

– There therefore cannot be a cut edge of 𝑆, 𝑉 ∖ 𝑆 in 𝐴.

– 𝑒 = 𝑢, 𝑣 is such an edge with smallest weight

– The theorem from before therefore implies that 𝑒 is a safe edge for 𝐴.

15

Prim’s MST Algorithm

𝑆 ≔ {𝑠}; 𝐴 ≔ ∅
while 𝑆, 𝐴 is not a spanning tree do

𝑒 = 𝑢, 𝑣 is an edge with minimum weight,
such that 𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑆

𝑆 ≔ 𝑆 ∪ 𝑣 ; 𝐴 ≔ 𝐴 ∪ 𝑢, 𝑣

Algorithms and Data StructuresFabian Kuhn

• Nodes in 𝑺 are called marked
– These are exactly the nodes that are in the subtree defined by 𝐴.

• A step of the algorithm:
– One looks for an edge with smallest weight to connect a marked node

(a node in 𝑆) with an unmarked node.

– This edge can in principle connect any unmarked node 𝑢 ∈ 𝑉 ∖ 𝑆 with any
marked node in 𝑆.

• Nodes 𝒖 ∈ 𝑽 ∖ 𝑺:
– 𝛼 𝑢 is the closest neighbor of 𝑢 in the subtree defined by the edges in 𝐴.

– 𝑑 𝑢 = dist 𝑢, 𝛼 𝑢

• 𝑑 𝑢 = ∞ if 𝑢 has no neighbor in 𝑉 ∖ 𝑆

– We thus always look for a node 𝑢 ∈ 𝑉 ∖ 𝑆 with smallest 𝑑 𝑢 and add the
edge 𝑢, 𝛼 𝑢 to 𝐴.

– For this, the values 𝑑 𝑢 have to be updated after every step.

16

Implementation of Prim’s Algorithm

Algorithms and Data StructuresFabian Kuhn

• Nodes in 𝑆 are marked

• Node 𝑢 in 𝑉 ∖ 𝑆:
– 𝛼 𝑢 is the closest neighbor of 𝑢 in 𝑆 (if defined)

– 𝑑 𝑢 = dist 𝑢, 𝛼 𝑢 (or 𝑑 𝑢 = ∞ if 𝑢 ∉ 𝑆 or 𝛼 𝑢 = NULL)

for all 𝑢 ∈ 𝑉 ∖ 𝑠 do
𝑢.marked = false; 𝑑(𝑢) = ∞; 𝛼 𝑢 = NULL

𝑑 𝑠 = 0; 𝐴 = ∅ // We start at node 𝑠

while there are unmarked nodes do

𝑢 = unmarked node with minimal 𝑑 𝑢

for all unmarked neighbors 𝑣 of 𝑢 do
if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝛼(𝑣) = 𝑢; 𝑑 𝑣 = 𝑤 𝑢, 𝑣

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼(𝑢)

17

Implementation of Prim’s Algorithm

Algorithms and Data StructuresFabian Kuhn

Heap / Priority Queue:

• Manages a set of (key,value) pairs

Operations:

• create() : creates an empty heap

• H.insert(x, key) : inserts element x with key key

• H.getMin() : returns element with smallest key

• H.deleteMin() : deletes element with smallest key
– H.getMin() and H.deleteMin() need to be consistent

• H.decreaseKey(x, newkey) : If newkey is smaller than the key of x,
the key is changed from x to newkey

18

Abstract Data Types : Priority Queue

Algorithms and Data StructuresFabian Kuhn

𝐻 = new priority queue; 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.decreaseKey(𝑣, 𝑤 𝑢, 𝑣)

𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

19

Implementation of Prim’s Algorithm

Algorithms and Data StructuresFabian Kuhn

Number of priority queue operations

• create 𝟏

• insert 𝑶(𝒏) (every node exactly once)

• getMin / deleteMin 𝑶 𝒏 (every node exactly once)

• decreaseKey 𝑶(𝒎) (for every edge at most once,
when the first node of the edge
is added to 𝑆)

20

Analysis of Prim’s MST Algorithm

Algorithms and Data StructuresFabian Kuhn

Implementation as a binary tree with the min-heap property

• This data structure is often also called a heap

• A tree has the min-heap property if in every subtree, the root has
the smallest key.

• getMin operation: trivial!

• Tree is always as balanced as possible
– All except for the bottom level is full.

– The bottom-most level are filled from left to right.

21

Priority Queues

3

10 7

12 2313 9

12 14 14

Algorithms and Data StructuresFabian Kuhn

Insert element with key 𝟖

22

Priority Queues : Insert

3

10 7

12 2313 9

12 14 8
Min-Heap
property
violated.

13

8

Min-Heap
property
violated.

8

10

Min-Heap
property
satisfied.

Algorithms and Data StructuresFabian Kuhn

Delete element at the root (with minimum key)

23

Priority Queues : Delete-Min

3

10 7

12 913 23

12 14 16

16

Min-Heap
property violated.

≤ ?
16

7 Min-Heap
property
violated.

≤ ?
16

9

Min-Heap
property
satisfied.

Algorithms and Data StructuresFabian Kuhn

Decrease Key: Node with key 𝟏𝟑⟹ new key 𝟗

24

Priority Queues : Decrease-Key

3

10 7

12 2313 9

12 14 16 2417

9

Min-Heap
property
violated.

9

10

Min-Heap
property satisfied.

For the decrease-key operation, one needs to have a reference to
the node of which the key has to be decreased.

Algorithms and Data StructuresFabian Kuhn

• The discussed variant is also called a binary heap
– durch einen Binärbaum mit Min-Heap-Eigenschaft implementiert

• Height (or depth) of the tree is always exactly 𝐥𝐨𝐠𝟐 𝒏

– Number of nodes in a full binary tree of height is 2𝑖+1 − 1

Number nodes at distance 𝑗 from the root is 2𝑗:

#nodes =෍

𝑗=0

𝑖

2𝑗 = 2𝑖+1 − 1.

• Running time of all operations: 𝑶 𝐥𝐨𝐠𝒏
– If the binary tree if somehow implemented in a reasonable way.

– One only needs to go up the tree once (for insert, decreaseKey)
or down (for deleteMin)

– We will next see an elegant way of implementing binary heaps

25

Priority Queues : Analysis

Algorithms and Data StructuresFabian Kuhn

Idea: Store everything in an array at positions 𝟏 to 𝒏

• This is possible because the binary tree is perfectly balanced

• For a node at position 𝑖
– Left child is at position 𝑗 = 2 ⋅ 𝑖, right child is at position 𝑗 = 2 ⋅ 𝑖 + 1

– Parent is a position 𝑗 = Τ𝑖 2 (integer division, i.e., 𝑗 = Τ𝑖 2)

26

Binary Heaps : Array Implementation

3

10 7

11 2313 9

17 14 16 2417

1

2 3

4 5 6 7

8 9 10 11 12

Algorithms and Data StructuresFabian Kuhn

• The array implementation of heaps (priority queues) provides
another very efficient sorting algorithm.

Heapsort (𝑯 is a binary heap, sort array 𝑨)

H = new BinaryHeap()

for i = 0 to n – 1 do
H.insert(A[i])

for i = 0 to n – 1 do
A[i] = H.deleteMin()

• Running time: 𝑶 𝒏 𝐥𝐨𝐠 𝒏

27

Heapsort

Algorithms and Data StructuresFabian Kuhn

𝐻 = new BinaryHeap(); 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.decreaseKey(𝑣, 𝑤 𝑢, 𝑣); 𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

Running time: 𝑶 𝒎 ⋅ 𝐥𝐨𝐠𝒏

• 𝑛 insert operations and deleteMin operations

• ≤ 𝑚 decreaseKey operations

28

Prim’s Algorithm with Binary Heaps

Algorithms and Data StructuresFabian Kuhn

𝐻 = new BinaryHeap(); 𝐴 = ∅

for all 𝑢 ∈ 𝑉 ∖ {𝑠} do

𝐻.insert(𝑢, ∞); 𝛼(𝑢) = NULL

𝐻.insert(𝑠, 0)

while 𝐻 is not empty do

𝑢 = H.deleteMin()

if not u.marked then

for all unmarked neighbors 𝑣 of 𝑢 do

if 𝑤 𝑢, 𝑣 < 𝑑(𝑣) then

𝐻.insert(𝑣, 𝑤 𝑢, 𝑣); 𝛼 𝑣 = 𝑢

𝑢.marked = true

if 𝑢 ≠ 𝑠 then 𝐴 = 𝐴 ∪ 𝑢, 𝛼 𝑢

Running time: 𝑶 𝒎 ⋅ 𝐥𝐨𝐠𝒏

• 𝑂 𝑚 insert operations and deleteMin operations

29

Prim’s Algorithm without Decrease-Key

Algorithms and Data StructuresFabian Kuhn

Running time with binary heaps: 𝑶 𝒎 ⋅ 𝐥𝐨𝐠𝒏

• 𝑛 ≤ 𝑚 + 1 insert operations and deleteMin operations

• ≤ 𝑚 decreaseKey operations

Best implementation of priority queues:

• Fibonacci Heaps (see algorithm theory lecture)

• Running time of operations (deleteMin, decreaseKey amortized)

insert: 𝑶 𝟏 , deleteMin: 𝑶 𝐥𝐨𝐠𝒏 , decreaseKey: 𝑶 𝟏

Running time with Fibonacci heaps: 𝑶 𝒎+ 𝒏 ⋅ 𝐥𝐨𝐠𝒏

• 𝑛 ≤ 𝑚 + 1 insert operations and deleteMin operations

• ≤ 𝑚 decreaseKey operations
(in this case, Prim needs to be implemented with decrease-key)

30

Prim’s Algorithmus: Better Running Time

Algorithms and Data StructuresFabian Kuhn 31

Kruskal’s MST Algorithm

𝐴 = ∅
while 𝐴 is not a spanning tree do

𝑒 = 𝑢, 𝑣 is an edge with smallest weight

s.t. 𝐴 ∪ 𝑢, 𝑣 does not contain a cycle

𝐴 = 𝐴 ∪ 𝑢, 𝑣

Algorithms and Data StructuresFabian Kuhn 32

Kruskal’s MST Algorithm: Example

3

14
4

6

1

10

13

23

21

31

8
25

20

1118

17

16

199

12

7 2
28

Algorithms and Data StructuresFabian Kuhn

• We have to show that 𝑒 is a safe edge for 𝐴

– As 𝐴 ∪ 𝑢, 𝑣 is cycle-free, 𝑢 and 𝑣 are not connected through a path

consisting of edges in 𝐴.

– There is a cut 𝑆, 𝑉 ∖ 𝑆 s. t. 𝐴 does not contain any cut edges, s. t. 𝑢 ∈ 𝑆
and 𝑣 ∈ 𝑉 ∖ 𝑆, and s. t. 𝑢, 𝑣 is a light cut edge.

33

Kruskal’s MST Algorithm

𝐴 = ∅
while 𝐴 is not a spanning tree do

𝑒 = 𝑢, 𝑣 is an edge with smallest weight

s.t. 𝐴 ∪ 𝑢, 𝑣 does not contain a cycle

𝐴 = 𝐴 ∪ 𝑢, 𝑣

𝒖 𝒗

𝑺 𝑽 ∖ 𝑺

Algorithms and Data StructuresFabian Kuhn

Kruskal’s Algorithm (Pseudocode)

1. 𝐴 = ∅

2. Sort edges by edge weight

3. for 𝑒 = 𝑢, 𝑣 ∈ 𝐸 (in sorted order) do

4. if 𝑢 and 𝑣 are in different components then

5. 𝐴 = 𝐴 ∪ 𝑒

• We must manage the connected componenten of the graph
defined by the edges in 𝐴 efficiently

• Running time: 𝑂 𝑚 log 𝑛 for sorting and the overall running time
for managing the components…

34

Implementation of Kruskal’s Algorithm

Algorithms and Data StructuresFabian Kuhn

Union-Find / Disjoint Sets:

• Manages a partition of elements

Operationen:

• create() : creates an empty union-find data structure

• U.makeSet(x) : adds set {𝑥} to the partition

• U.find(x) : returns the set of element 𝑥

• U.union(S1, S2) : merges sets 𝑆1 and 𝑆2 to set 𝑆1 ∪ 𝑆2

35

Abstract Data Types : Union-Find

𝒙𝟏
𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

Algorithms and Data StructuresFabian Kuhn

Kruskal’s Algorithm

1. 𝐴 = ∅

2. U = create new

3. for all 𝑢 ∈ 𝑉 do

4. U.makeSet(𝑢)

5. Sort edges by edge weight

6. for all 𝑒 = 𝑢, 𝑣 ∈ 𝐸 (in sorted order) do

7. 𝑆𝑢 = U.find(𝑢); 𝑆𝑣 = U.find(𝑣)

8. if 𝑆𝑢 ≠ 𝑆𝑣 then

9. 𝐴 = 𝐴 ∪ 𝑒

10. U.union(𝑆𝑢,𝑆𝑣)

36

Kruskal with Union-Find

Algorithms and Data StructuresFabian Kuhn

Best Union-Find Data Structure

• Running time for 𝑚 union-find operations on 𝑛 elements
(𝑛 makeSet operations):

𝑶 𝒎 ⋅ 𝜶 𝒏

• 𝛼 𝑛 is the inverse of the Ackermann function and grows
extremaly slowly (for all practically relevant 𝑛, 𝛼 𝑛 ≤ 5)

Running Time Kruskal

• Sort edges: 𝑂 𝑚 ⋅ log 𝑛
– If the weights are integers from 0,… , 𝑛𝑂 1 , the edges can be sorted with

radix sort in linear time.

• Union-Find operations: 𝑂 𝑚 ⋅ 𝛼 𝑛

• Overall: 𝑂 𝑚 ⋅ log 𝑛
– Better if the edges can be sorted faster

37

Kruskal: Running Time Analysis

Algorithms and Data StructuresFabian Kuhn

Both algorithms are typical examples for so-called

greedy algorithms

• In greedy algorithms, a solution is built in a step-by-step manner.

• In each step, the current best “element” is added to the solution.

• Already changes parts of the solution are not altered any more.

Prim and Kruskal algorithms to compute an MST

• We start with an empty edge set.

• In each step, the currently best edge is added
– For Prim: best edge that keeps the already added part connected

– For Kruskal: best edge s.t. the set can still be extended to a spanning tree.

• A chosen edge is never discarded later.

38

Prim and Kruskal: Remarks

