
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger
P. Schneider

Algorithms and Datastructures

Summer Term 2020

Sample Solution Exercise Sheet 1
Due: Wednesday, 20th of May, 4 pm.

Exercise 1: Registration (5 Points)

Register for the online course system Daphne. You can also find the according link on the Website of
this course. Make sure that your data is correct, specifically that you can be reached under the given
email address. Then execute the checkout command on your SVN-repository.1

Exercise 2: Quicksort (5 Points)

Implement the algorithm QuickSort from the lecture. A template QuickSort.py is provided on the
website. Write a unit test both for the quicksort_divide and the quicksort_recursive method.
The unit tests should check at least one non-trivial example. If there are critical cases that are easy
to check (e.g., an empty input), you should make a unit test for these cases, too.

Sample Solution

C.f. Quicksort.py in the public folder or on the website.

Exercise 3: Time Measurement (5 Points)

Measure the runtime T (n) of the algorithms SelectionSort, MergeSort2 and of your QuickSort imple-
mentation for different input sizes n. You should test QuickSort for two different variants of choosing
the pivot: Choosing the first element as pivot and choosing a random element as pivot. Repeat the ex-
periment for two different input types: Arrays with random integers and arrays with pairwise distinct
integers in descending order.
Plot the runtimes of the four algorithms algorithms each with the two different input types with input
sizes n ∈ {100, 200, . . . , 5000}.3 Use your plots to compare the runtimes and write a short evaluation
into the file experience.txt (c.f., Task 4).

1Your SVN-repository will be created automatically after your registration to Daphne. The URL is https://daphne.
informatik.uni-freiburg.de/ss2020/AlgoDat/svn/your-rz-account-name

2You can find the code for these algorithms in the public repository https://daphne.informatik.uni-freiburg.de/

ss2020/AlgoDat/svn/public
3The differences in runtimes will be most distinct if they are plotted in a single chart with n on the x-axis and the

runtime T (n) on a logarithmic y-axis.

https://daphne.informatik.uni-freiburg.de/ss2020/AlgoDat/
http://ac.informatik.uni-freiburg.de/teaching/ss_20/ad-conditional.php
https://daphne.informatik.uni-freiburg.de/ss2020/AlgoDat/svn/your-rz-account-name
https://daphne.informatik.uni-freiburg.de/ss2020/AlgoDat/svn/your-rz-account-name
https://daphne.informatik.uni-freiburg.de/ss2020/AlgoDat/svn/public
https://daphne.informatik.uni-freiburg.de/ss2020/AlgoDat/svn/public


Sample Solution

Figures 1 and 2 show plots of the running times at different scales. We make the following observations
(these are certainly not all observations one can possibly make).

• SelectionSort clearly has a super-linear trend (more precisely: a quadratic trend).

• SelectionSort is somewaht faster for randomized inputs than for inputs in reverse order (we think
that this is due to the fact that in case of a reverse list the line in the inner if-clause is always
executed, which is not always the case for a randomized input).

• For a deterministic pivot (first element) and a reverse ordered input QuickSort has a super-linear
trend as well. In fact, QuickSort has the lowest of all tested running times in this case (the tested
case is a worst case for QuickSort).

• On the other hand, QuickSort is much faster than all all other variants (c.f., Figure 2) if a ran-
domization of either the input or the pivot takes place (more precisely: the runtime is Θ(n log n)
“with high probability”, c.f. lecture week 2).

• MergeSort also has a much better runtime than the algorithms with quadratic trend for all
tested inputs (more precisely: the runtime is Θ(n log n) guaranteed, c.f. lecture week 2).

Exercise 4: Submission (5 Points)

Commit your code including the tests and the 8 plots into the SVN, into a subfolder uebungsblatt-01
(German for exercise sheet 01). Make sure that there are no errors when you run your code (including
style check and unit tests) on Jenkins. Commit a file experience.txt in which you describe your
experiences with this exercise sheet and any problems that may have appeared.



	0

	200

	400

	600

	800

	1000

	1200

	1400

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500 	5000

ms-rand.txt
ms-reverse.txt

qs-rand-detpiv.txt
qs-rand-randpiv.txt
qs-reverse-detpiv.txt
qs-reverse-randpiv.txt

ss-rand.txt
ss-reverse.txt

Figure 1: The first plot shows the runtimes of all requested variants of sorting algorithms for the
respective inputs over the input size n.

	0.1

	1

	10

	100

	1000

	10000

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500 	5000

ms-rand.txt
ms-reverse.txt

qs-rand-detpiv.txt
qs-rand-randpiv.txt
qs-reverse-detpiv.txt
qs-reverse-randpiv.txt

ss-rand.txt
ss-reverse.txt

Figure 2: The second plot shows the runtimes of all requested variants of sorting algorithms for the
respective inputs over the input size n. The y axis is logarithmic.


