
University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn

Algorithms and Data Structures Summer Term 2021 Exercise Sheet 4

Exercise 1: Hashing - Collision Resolution with Open Addressing

(a) Let $h(s, j) := h_1(s) - 2j \mod m$ and let $h_1(x) = x + 2 \mod m$. Insert the keys 51, 13, 21, 30, 23, 72 into the hash table of size m = 7 using linear probing for collision resolution (the table should show the final state).

(b) Let $h(s, j) := h_1(s) + j \cdot h_2(s) \mod m$ and let $h_1(x) = x \mod m$ and $h_2(x) = 1 + (x \mod (m-1))$. Insert the keys 28, 59, 47, 13, 39, 69, 12 into the hash table of size m = 11 using the double hashing probing technique for collision resolution. The hash table below should show the final state.

ľ	0	1	2	3	4	5	6	7	8	9	10

Exercise 2: Application of Hashtables

Consider the following algorithm:

Algorithm 1 algorithm	\triangleright Input: Array A of length n with integer entries					
1: for $i = 1$ to $n - 1$ do						
2: for $j = 0$ to $i - 1$ do						
3: for $k = 0$ to $n - 1$ do						
4: if $ A[i] - A[j] = A[k]$ then						
5: return true						
6: return false						

- (a) Describe what algorithm computes and analyse its asymptotical runtime.
- (b) Describe a different algorithm \mathcal{B} for this problem (i.e., $\mathcal{B}(A) = \texttt{algorithm}(A)$ for each input A) which uses hashing and takes time $\mathcal{O}(n^2)$.

You may assume that inserting and finding keys in a hash table needs $\mathcal{O}(1)$ if $\alpha = \mathcal{O}(1)$ (α is the load of the table).

(c) Describe another algorithm for this problem without using hashing which takes time $\mathcal{O}(n^2 \log n)$.