University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn



## Algorithms and Data Structures Summer Term 2021 Exercise Sheet 10

## Exercise 1: Dijkstras' Algorithm

Execute Dijkstras' Algorithm on the following weighted, directed graph, starting at node s. Into the table further below, write the distances from each node to s that the algorithm stores in the priority queue after each iteration.

|                                                                                           | $\frac{2}{1}$ |   | )        |          | $\rightarrow 1$ |                      |          |                   |          |
|-------------------------------------------------------------------------------------------|---------------|---|----------|----------|-----------------|----------------------|----------|-------------------|----------|
|                                                                                           |               | b | 4        | 3        | 2               | $\xrightarrow{2}{e}$ | 6        | $\rightarrow$ $g$ |          |
| Initialization                                                                            |               | s | a        | b        | с               | d                    | е        | f                 | g        |
| $\frac{\delta(s,\cdot) =}{}$                                                              |               | 0 | $\infty$ | $\infty$ | $\infty$        | $\infty$             | $\infty$ | $\infty$          | $\infty$ |
| 1. Step $(u = s)$<br>$\delta(s, \cdot) =$                                                 |               | S | a        | b        | с               | d                    | e        | f                 | g        |
| $\hline \hline 2. \text{ Step } (u = \\ \delta(s, \cdot) = \hline \hline$                 | )             | s | a        | b        | с               | d                    | е        | f                 | g        |
| $\overline{ \begin{array}{c} \textbf{3. Step } (u = \\ \delta(s, \cdot) = \end{array} } $ | )             | s | a        | b        | с               | d                    | е        | f                 | g        |
| $\overline{ \begin{array}{c} \text{4. Step } (u = \\ \delta(s, \cdot) = \end{array} } $   | )             | s | a        | b        | с               | d                    | е        | f                 | g        |
| 5. Step $(u = \delta(s, \cdot) =$                                                         | )             | s | a        | b        | с               | d                    | е        | f                 | g        |
| 6. Step $(u = \delta(s, \cdot) =$                                                         | )             | S | a        | b        | с               | d                    | е        | f                 | g        |
| 7. Step $(u = \delta(s, \cdot) =$                                                         | )             | S | a        | b        | с               | d                    | е        | f                 | g        |
| 8. Step $(u = \delta(s, \cdot) =$                                                         | )             | s | a        | b        | С               | d                    | е        | f                 | g        |

## Exercise 2: Currency Exchange

Consider *n* currencies  $w_1, \ldots, w_n$ . The exchange rates are given in an  $n \times n$ -matrix *A* with entries  $a_{ij}$   $(i, j \in \{1, \ldots, n\})$ . Entry  $a_{ij}$  is the exchange rate from  $w_i$  to  $w_j$ , i.e., for one unit of  $w_i$  one gets  $a_{ij}$  units of  $w_j$ .

Given a currency  $w_{i_0}$ , we want to find out whether there is a sequence  $i_0, i_1, \ldots, i_k$  such that we make profit if we exchange one unit of  $w_{i_0}$  to  $w_{i_1}$ , then to  $w_{i_2}$  etc. until  $w_{i_k}$  and then back to  $w_{i_0}$ .

- (a) Translate this problem to a graph problem. That is, define a graph and a property which the graph fulfills if and only if there is a sequence of currencies as described above.
- (b) Give an algorithm that decides in  $\mathcal{O}(n^3)$  time steps whether there is a sequence of currencies as described above. Explain the correctness and runtime.

*Hint*:  $\log(a \cdot b) = \log a + \log b$ .