Algorithms and Data Structures Conditional Course

Lecture 2

Runtime Analysis, Sorting II

UNI FREIBUR

Fabian Kuhn Algorithms and Complexity

Runtime Analysis I

- How can we analyze the runtime of an algorithm?
 - runtime is different on different computers...
 - depends on compiler, programming language, etc.
- We need an abstract measure to express the runtime
- Idea: Count the number of (basic) operations
 - instead of directly measuring the time
 - the number of basic operations is independent of computer, compiler
 - It is a good measure for the runtime if all basic operations require about the same time.

Basic Operations

What is a basic operation?

- Simple arithmetic operations / comparisons
 +, -, *, /, % (mod), <, >, ==, ...
- One memory access
 - reading or writing a variable
 - not clear if this is really a basic operation?
- One function call
 - Of course only jumping to the function code
- Intuitively: one line of program code
- **Better:** one line of assembly language code
- Even better (?): one processor cycle
- We will see: It is only important that the number of basic opertions is roughly proportional to the actual running time.

RAM = Random Access Machine

- Standard model to analyze algorithms!
- Basic operations (as "defined") all require one time unit
- In particular, all memory accesses are equally expensive:
 Each memory cell (1 machine word) can be read or written in 1 time unit
 - In particular ignores memory hierarchies
 - In most cases, it is however a reasonable assumption
- There are alternative abstract models:
 - to explicitly capture memory hierarchies
 - for huge data volumes (cf. big data)
 - e.g.: streaming-models: memory has to be read sequentially
 - for distributed / parallel architectures
 - memory access can be local or over the network...

So far: Number of basic operations is proportional to the runtime

• We can also achieve this without counting the basic operations exactly!

Simplification 1: We only calculate an upper bound (or a lower bound) on the number of basic operations

- such that the upper / lower bound is still proportional to the runtime...
- No. of basic op. can depend on several properties of the input
 Size/length of input, but, e.g., for sorting also the ordering in the input

Simplification 2: Most important parameter is input size nWe always consider the runtime T(n) as a function of n.

And we ignore other properties of the input

#basic op. $\leq c \cdot \#$ inner for loop iterations

$$x(n)$$

$$x(n) = \sum_{i=0}^{n-2} (n-i) = \sum_{h=2}^{n} h \le \sum_{h=1}^{n} h = \frac{n(n+1)}{2} \le n^2$$

Runtime $T(n) \leq c \cdot n^2$

Zä

T(n): Number of basic operations of Selection Sort algorithms for \supseteq arrays of length n

Lemma: There is a constant $c_U > 0$, such that $T(n) \le c_U \cdot n^2$

Lemma: There is a constant $c_L > 0$, such that $T(n) \ge c_L \cdot n^2$

Runtime analysis

Summary

- We can only obtain a value that is proportional to the runtime.
- However, we also do not want anything else:
 - Analysis should be independent of computer / compiler / etc.
 - We want to have statements that are valid in 10 / 100 /... years
- We will always get statements of the following form: There is a constant C, such that $T(n) \le C \cdot f(n)$ or $T(n) \ge C \cdot f(n)$
- The Big-O notation allows to simplify / generalize this kind of statements...

Big-O Notation

- Formalism to describe the asymptotic growth of functions.
 For formal definitions: see next slide...
- There is a const. C > 0, s. t. $T(n) \le C \cdot f(n)$ becomes: $T(n) \in O(f(n))$
- There is a const. C > 0, s. t. $T(n) \ge C \cdot g(n)$ becomes: $T(n) \in \Omega(g(n))$
- For Selection Sort:

$$\left. \begin{array}{c} T(n) \in O(n^2) \\ T(n) \in \Omega(n^2) \end{array} \right\} T(n) \in \Theta(n^2)$$

Big-O Notation : Definitions

 $O(g(n)) \coloneqq \{f(n) \mid \exists c, n_0 > 0 \forall n \ge n_0 : f(n) \le c \cdot g(n)\}$

• Function $f(n) \in O(g(n))$, if there are constants c and n_0 s.t. $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

$\Omega(g(n)) \coloneqq \{f(n) \mid \exists c, n_0 > 0 \ \forall n \ge n_0 : f(n) \ge c \cdot g(n)\}$

• Function $f(n) \in \Omega(g(n))$, if there are constants c and n_0 s.t. $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$

$\Theta(g(n)) \coloneqq O(g(n)) \cap \Omega(g(n))$

• Function $f(n) \in \Theta(g(n))$, if there are constants c_1, c_2 and n_0 s.t. $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq n_0$, resp. if $f(n) \in O(n)$ and $f(n) \in \Omega(n)$

Si

Big-O Notation : Definitions

 $o(g(n)) \coloneqq \{f(n) \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \le c \cdot g(n)\}^{\mathsf{r}}$

• Function $f(n) \in o(g(n))$, if for all constants c > 0, we have $f(n) \le c \cdot g(n)$ (for sufficiently large n, indep. of c)

 $\omega(g(n)) \coloneqq \{f(n) \mid \forall c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : f(n) \ge c \cdot g(n)\}$

• Function $f(n) \in \omega(g(n))$, if for all constants c > 0, we have $f(n) \ge c \cdot g(n)$ (for sufficiently large n, indep. of c)

In particular:

$$\begin{aligned} f(n) &\in o\bigl(g(n)\bigr) \implies f(n) \in O\bigl(g(n)\bigr) \\ f(n) &\in \omega\bigl(g(n)\bigr) \implies f(n) \in \Omega\bigl(g(n)\bigr) \end{aligned}$$

$f(n) \in O(g(n))$:

- $f(n) " \leq " g(n)$, asymptotically...
- f(n) asymptotically grows at most as fast as g(n)

$f(n) \in \Omega(g(n))$:

- $f(n) " \ge " g(n)$, asymptotically...
- f(n) asymptotically grows at least as fast as g(n)

$f(n) \in \Theta(g(n))$:

- f(n) " = " g(n), asymptotically...
- f(n) asymptotically grows equally fast as g(n)

$f(n) \in o(g(n))$:

- f(n) " < " g(n), asymptotically...
- f(n) asymptotically grows slower than g(n)

 $f(n) \in \omega(g(n))$:

- f(n) " > " g(n), asymptotically...
- f(n) asymptotically grows faster than g(n)

If f(n) and g(n) grow monotonically, we have:

$$f(n) \in o(g(n)) \iff f(n) \notin \Omega(g(n))$$
$$f(n) \in \omega(g(n)) \iff f(n) \notin O(g(n))$$

Definition by Limits (simplified)

The following definitions hold for monotonically growing functions

$$f(n) \in O(g(n)), \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$
$$f(n) \in \Omega(g(n)), \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$
$$f(n) \in \Theta(g(n)), \qquad 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$
$$f(n) \in o(g(n)), \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
$$f(n) \in \omega(g(n)), \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Writing Convention:

- $O(g(n)), \Omega(g(n)), \dots$ are sets (of functions)
- Correct way of writing (in principle): $f(n) \in O(g(n))$
- Very common way of writing: f(n) = O(g(n))

Examples:

- $T(n) = O(n^2)$ instead $T(n) \in O(n^2)$
- $T(n) = \Omega(n^2)$ instead $T(n) \in \Omega(n^2)$
- $f(n) = n^2 + O(n)$: $f(n) \in \{g(n) : \exists h(n) \in O(n) \text{ s.t. } g(n) = n^2 + h(n)\}$
- $a(n) = (1 + o(1)) \cdot b(n)$

Zä

Writing Convention:

- $O(g(n)), \Omega(g(n)), \dots$ are sets (of functions)
- Correct way of writing (in principle): $f(n) \in O(g(n))$
- Very common way of writing: f(n) = O(g(n))

Asymptotic Behavior of General Limits:

- Same notation is used more generally, e.g., f(x) for $x \to 0$
- E.g., Taylor approx.: $e^x = 1 + x + O(x^2)$, or $e^x = 1 + x + o(x)$ Alternative Definition for $\Omega(g(n))$: $\int_{0}^{(n)=n^2} \int_{0}^{(n)=n^2} \int_{0}^{(n)=n^$
 - We will use the 1st definition
 - The two definitions are only different for non-monotonic functions

Big-O Notation : Examples

Selection Sort:

• Runtime T(n), there are constants $c_1, c_2: c_1n^2 \leq T(n) \leq c_2n^2$ $T(n) \in O(n^2), \quad T(n) \in \Omega(n^2), \quad T(n) \in \Theta(n^2)$

55

• T(n) grows more than linear in $n: T(n) \in \omega(n)$

ZÄ

Worst Case Analysis

- Analyze runtime T(n) for a worst possible input of size n
- Important / standard way of analyzing algorithms

Best Case Analyse

- Analyze runtime T(n) for a best possible input of size n
- Usually not very interesting...

Average Case Analyse

- Analyze runtime T(n) for a typical input of size n
- Problem: what is a typical input?
 - Standard approach: use a random input
 - Not clear, how close real inputs and random inputs are...
 - Possible alternative: smoothed analysis (we will not look at this)

Zä

How good is quadratic runtime?

Quadratic = 2x as large input $\rightarrow 4x$ as long runtime

- For large *n*, this already seems to grow quite fast...

Example calculation:

- Assume that the number of basic operations $T(n) = n^2$
- Additionally, assume there is 1 basic operation per processor cycle
- For a 1Ghz processor, we get 1 ns per basic operation

Input size <i>n</i>	4 bytes per number	Runtime $T(n)$
10 ³ numbers	$\approx 4 \mathrm{KB}$	$10^{3\cdot 2} \cdot 10^{-9} \mathrm{s} = 1 \mathrm{ms}$
10 ⁶ numbers	$\approx 4 \mathrm{MB}$	$10^{6\cdot 2} \cdot 10^{-9} \mathrm{s} = 16.7 \mathrm{min}$
10 ⁹ numbers	≈ 4 GB	$10^{9\cdot 2} \cdot 10^{-9} \text{ s} = 31.7 \text{ years}$

too slow for large problems!

Analysis Merge Sort

- Divide is trivial $\rightarrow \text{cost } O(1)$
- Recursive sorting: We will look at this...
- Merge: We will look at this first...

Analysis Merge Step

PREN

Runtime T(n) consists of:

- Divide and Merge: O(n)
- 2 recursive calls to sort $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor$ elements

Recursive formulation of T(n):

• There is a constant b > 0, s. t.

$$T(n) \le T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \underbrace{b \cdot n}_{=}, \qquad \underbrace{T(1) \le b}_{=}$$

• We simplify a bit and ignore all the rounding:

$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n, \quad T(1) \le b$$

assume : u power of 2

Analysis Merge Sort

$$T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n, \quad \underline{T(1) \leq b}$$

Let's just try and see what we get...

$$T(u) \leq 2 T(\frac{u}{2}) + b \cdot n \qquad T(\frac{u}{2}) \leq 2 T(\frac{u}{4}) + b \cdot \frac{u}{2}$$

$$\leq 4 \cdot T(\frac{u}{4}) + 2 \cdot b \cdot \frac{u}{2} + b \cdot n$$

$$= 4 T(\frac{u}{4}) + 2 \cdot b \cdot n$$

$$\leq 4 (2 \cdot T(\frac{u}{3}) + b \cdot \frac{u}{4}) + 2 \cdot b \cdot n$$

$$= 8 \cdot T(\frac{u}{3}) + 3 \cdot b \cdot n \qquad guess$$

$$\leq 2^{k} \cdot T(\frac{u}{2^{k}}) + k \cdot b \cdot n \qquad guess$$

$$\leq 1 \cdot T(1) + \log_{2}(u) \cdot b \cdot n \leq b \cdot n (1 + \log_{2}(u))$$

BURG

IREI

Alternative Analysis of Merge Sort

Recursive equation:
$$T(n) \le 2 \cdot T\left(\frac{n}{2}\right) + \underbrace{b \cdot n}_{==}, T(1) \le b$$

Consider the recursion tree:

NH NH

Merge Sort Measurements

BURG

Merge Sort Measurements

Summary Analysis Merge Sort

The runtime of Merge Sort is $T(n) \in O(n \cdot \log n)$.

• grows almost linearly with the input size n...

How good is this?

- Example calculation:
 - Again assume that 1 basic operation = 1 ns
 - We will be a bit more conservative than before and assume that $T(n) = 10 \cdot n \log n$

Input size <i>n</i>	4 byte numbers	Runtime $T(n) = 10 \cdot n \log n$	n^2
$2^{10} \approx 10^3$ numbers	$\approx 4 \mathrm{KB}$	$10 \cdot 10 \cdot 2^{10} \cdot 10^{-9} s \approx 0.1 \text{ ms}$	1 ms
$2^{20} \approx 10^6$ numbers	$\approx 4 \mathrm{MB}$	$10 \cdot 20 \cdot 2^{20} \cdot 10^{-9} s \approx 0.2 s$	16.7 min
$2^{30} \approx 10^9$ numbers	≈ 4 GB	$10 \cdot 30 \cdot 2^{30} \cdot 10^{-9} s \approx 5.4 min$	31.7 years
$2^{40} \approx 10^{12}$ numbers	$\approx 4 \text{TB}$	$10 \cdot 40 \cdot 2^{40} \cdot 10^{-9} s \approx 122 h$	$> 10^7$ years

Quick Sort : Analysis

- Runtime depends on how we choose the pivots
- Runtime to sort array of size n if pivot partitions array into parts of sizes λn and $(1 \lambda)n$:

$$T(n) = T(\lambda n) + T((1 - \lambda)n) + "Find pivot + Divide"$$

- Divide:
 - We iterate over the array from both sides, O(1) cost per step
 - \rightarrow Time to partition array of length n: O(n)

Quick Sort : Analysis

If we can also find a pivot in time O(n) such that such that the array is partitioned into parts of sizes λn and $(1 - \lambda)n$:

• There is a constant b > 0, s. t.

$$T(n) \le T(\lambda n) + T((1-\lambda)n) + b \cdot n, \qquad T(1) \le b$$

Extreme case I) $\lambda = 1/2$ (best case):

$$T(n) \le 2T\left(\frac{n}{2}\right) + bn, \qquad T(1) \le b$$

• As for Merge Sort: $T(n) \in O(n \log n)$

Extreme case II) $\lambda n = 1$, $(1 - \lambda)n = n - 1$ (worst case):

$$T(n) = T(n-1) + bn, \qquad T(1) \le b$$

Quick Sort : Worst Case Analysis
Extreme case II)
$$\lambda n = 1, (1 - \lambda)n = n - 1$$
 (worst case):

$$T(n) = T(n - 1) + bn, \qquad T(1) \le b$$
In this case, we obtain $T(n) \in \Theta(n^2)$:

$$T(n) = T(n - 1) + bn \qquad T(1) \le b$$

$$= T(n - 2) + b(n - 1) + bn \qquad Gase! T(n) \le b \cdot \frac{n(n+1)}{2}$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= T(n - 2) + b(n - 2 + n - 1 + n)$$

$$= b(1 + 2 + \dots + n)$$

$$= b(1 + 2 + \dots + n)$$

$$= b(n(n+1)) = f(n^{2})$$

Quick Sort With a Random Pivot

Partition For Random Pivot:

- Runtime $T(n) = O(n \log n)$ for all inputs
 - but only in Erwartungswert and with very high probability

Intuition:

• With probability 1/2, we get parts of size $\geq n/4$, s. t.

$$T(n) \leq T\left(\frac{n}{4}\right) + T\left(\frac{3n}{4}\right) + bn$$

Quick Sort With a Random Pivot

Partition For Random Pivot:

- Runtime $T(n) = O(n \log n)$ for all inputs
 - but only in Erwartungswert and with very high probability

Analysis:

- We will not do this here
 - see, e.g., Cormen et al. or the algorithm theory lecture
- Possible approach: write recursion in terms of expected values

 $\mathbb{E}[T(n)] \le \mathbb{E}[T(N_L) + T(n - N_L)] + bn$

Task: Sort sequence a_1, a_2, \ldots, a_n

Goal: lower bound (worst-case) runtime

Comparison-based sorting algorithms

- Comparisons are the only allowed way to determine the relative order between elements
- Hence, the only thing that can influence the sequence of elements in the final sorted sequence are comparisons of the kind

$$a_i = a_j, a_i \le a_j, a_i < a_j, a_i \ge a_j, a_i > a_j$$

- If we assume that the elements are pair-wise distinct, we only need comparisons of the form $a_i \leq a_j$
- 1 comparison = 1 basic operation

Comparison-Based Sorting Algorithms

Alternative View

 Every program (for a deterministic, comp.-based sorting alg.) can be brought into a form where every if/while/...-condition is of the following form:

if
$$(a_i \leq a_j)$$
 then ...

• In each execution of an algorithm, the results of these comparisons induce a sequence of T/F (true/false) values:

TFFTTTFTFFFFFFFFFTFTTT ...

- This sequence uniquely determines how the values of the array are rearranged (permuted) by the algorithm.
- Different inputs with the same values therefore must lead to different T/F sequences.

Comparison-Based Sorting Algorithms

Comp.-Based Sorting: Lower Bound

- In comparison-based sorting algorithms, the execution depends on the initial ordering of the values in the inputs, but it does not depend on the actual values.
 - We restrict to cases where the values are all distinct.
- W.I.o.g. we can assume that we have to sort the numbers 1, ..., n.
- Different inputs have to be handled differently.
- Different inputs result in different T/F sequences
- Runtime of an execution \geq length of the resulting T/F sequence
- Worst-Case runtime \geq Length of longest T/F sequence:
 - We want a lower bound
 - Count no. of possible inputs \rightarrow we need at least as many T/F sequences...

Comp.-Based Sorting: Lower Bound

Number of possible inputs (input orderings):

 $N' = N \cdot (N - 1) \cdot (N - 2) \cdot ... \cdot 1$

Number of T/F sequences of length $\leq k$: Lange = k: 2^{k} $\overrightarrow{I}_{f} = \overrightarrow{I}_{f} = --- \overrightarrow{I}_{f}$ $2^{k} + 2^{k-1} + 2^{k-2} + ... + 1 \leq 2^{k+1}$

Theorem: Every comparison-based sorting algorithm requires $\Omega(n \cdot \log n)$ comparisons in the worst case.

Runhine
$$\leq T$$

 $2^{T+1} \geq n!$
 $T+1 \geq \log_2(n!)$
 $= \mathcal{N}(u \log n).$

$$\binom{n/2}{2} \leq n! \leq n^n$$

$$\frac{1}{2} \cdot \log\left(\frac{n}{2}\right) \leq \log(n!) \leq n \cdot \log(n)$$

$$\log(n!) = \Theta(n \log n)$$

Z

Sorting in Linear Time

- Not possible with comparison-based algorithms
 - Lower bound also holds for randomized algorithms...
- Sometimes, we can be faster
 - If we can exploit special properties of the input
- Example: Sort n numbers $a_i \in \{0,1\}$:
 - 1. Count number of zeroes and ones in time O(n)
 - 2. Write solution to array in time O(n)

Counting Sort

Task:

- Sort integer array A of length n
- We know that for all $i \in \{0, \dots, n\}$, $A[i] \in \{0, \dots, k\}$

Algorithm:

1: counts = new int[k+1] // new int array of length k
2: for i = 0 to k do counts[i] = 0
3: for i = 0 to n-1 do counts[A[i]]++
4: i = 0;
5: for j = 0 to k do
$$\checkmark$$
 $O(n+k)$
6: for l = 1 to counts[j] do
7: A[i] = j; i++

LN I