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• How can we analyze the runtime of an algorithm?
– runtime is different on different computers…

– depends on compiler, programming language, etc.

• We need an abstract measure to express the runtime

• Idea: Count the number of (basic) operations
– instead of directly measuring the time

– the number of basic operations is independent of computer, compiler

– It is a good measure for the runtime if all basic operations require about the
same time.
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Runtime Analysis I
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What is a basic operation?

• Simple arithmetic operations / comparisons
– +, -, *, /, % (mod), <, >, ==, …

• One memory access
– reading or writing a variable

– not clear if this is really a basic operation?

• One function call
– Of course only jumping to the function code

• Intuitively: one line of program code

• Better: one line of assembly language code

• Even better (?): one processor cycle

• We will see: It is only important that the number of basic opertions
is roughly proportional to the actual running time.
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RAM = Random Access Machine

• Standard model to analyze algorithms!

• Basic operations (as “defined”) all require one time unit

• In particular, all memory accesses are equally expensive:

Each memory cell (1 machine word) can be read or written in 1 
time unit
– In particular ignores memory hierarchies

– In most cases, it is however a reasonable assumption

• There are alternative abstract models:
– to explicitly capture memory hierarchies

– for huge data volumes (cf. big data)

• e.g.: streaming-models: memory has to be read sequentially

– for distributed / parallel architectures

• memory access can be local or over the network…
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RAM Model
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So far: Number of basic operations is proportional to the runtime

• We can also achieve this without counting the
basic operations exactly!

Simplification 1: We only calculate an upper bound (or a lower
bound) on the number of basic operations

– such that the upper / lower bound is still proportional to the runtime…

• No. of basic op. can depend on several properties of the input
– Size/length of input, but, e.g., for sorting also the ordering in the input

Simplification 2: Most important parameter is input size 𝑛
We always consider the runtime 𝑇(𝑛) as a function of 𝑛.

– And we ignore other properties of the input
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Runtime analysis II
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SelectionSort(A):

1: for i=0 to n-2 do

2:   minIdx = i

3:   for j=i to n-1 do

4:     if A[j] < A[minIdx] then

5:       minIdx = j

6:   swap(A[i], A[minIdx])
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Selection Sort: Analysis

#basic op. ≤ 𝑐 ⋅ #inner for loop iterations

𝑥(𝑛)

≤ 𝑐1

≤ 𝑐2

≤ 𝑐3

𝑥 𝑛 = 

𝑖=0

𝑛−2

𝑛 − 𝑖 = 

ℎ=2

𝑛

ℎ ≤ 

ℎ=1

𝑛

ℎ =
𝑛 𝑛 + 1

2
≤ 𝑛2
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SelectionSort(A):

1: for i=0 to n-2 do

2:   minIdx = i

3:   for j=i to n-1 do

4:     if A[j] < A[minIdx] then

5:       minIdx = j

6:   swap(A[i], A[minIdx])
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Selection Sort: Analysis

≤ 𝑐1

≤ 𝑐2

≤ 𝑐3

Runtime 𝑻 𝒏 ≤ 𝒄 ⋅ 𝒏𝟐 𝑻 𝒏 ≥ 𝒄𝟐
′ ⋅ 𝒏𝟐

𝑇(𝑛)

≥ 𝑐2
′

#basic op. ≤ 𝑐 ⋅ #inner for loop iterations

𝑥 𝑛 ≤ 𝑛2
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𝑻(𝒏): Number of basic operations of Selection Sort algorithms for 
arrays of length 𝑛

Lemma: There is a constant 𝒄𝑼 > 𝟎, such that 𝑻 𝒏 ≤ 𝒄𝑼 ⋅ 𝒏
𝟐

Lemma: There is a constant 𝒄𝑳 > 𝟎, such that 𝑻 𝒏 ≥ 𝒄𝑳 ⋅ 𝒏
𝟐
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Selection Sort: Analysis
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Summary 

• We can only obtain a value that is proportional to the runtime.

• However, we also do not want anything else:
– Analysis should be independent of computer / compiler / etc. 

– We want to have statements that are valid in 10 / 100 /… years

• We will always get statements of the following form:

There is a constant 𝐶, such that

𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛 or 𝑇 𝑛 ≥ 𝐶 ⋅ 𝑓(𝑛)

• The Big-O notation allows to simplify / generalize this kind of
statements…
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Runtime analysis
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• Formalism to describe the asymptotic growth of functions.
– For formal definitions: see next slide…

• There is a const. 𝐶 > 0, s. t. 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓(𝑛) becomes:

𝑇 𝑛 ∈ 𝑂(𝑓 𝑛 )

• There is a const. 𝐶 > 0, s. t. 𝑇 𝑛 ≥ 𝐶 ⋅ 𝑔(𝑛) becomes:

𝑇 𝑛 ∈ Ω(𝑔 𝑛 )

• For Selection Sort:
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Big-O Notation

𝑻 𝒏 ∈ 𝑶 𝒏𝟐

𝑻 𝒏 ∈ 𝛀 𝒏𝟐
𝑻 𝒏 ∈ 𝚯 𝒏𝟐
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𝑶 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄, 𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛 ), if there are constants 𝑐 and 𝑛0 s. t. 
𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0

𝛀 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄, 𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ Ω(𝑔 𝑛 ), if there are constants 𝑐 and 𝑛0 s. t. 
𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0

𝚯 𝒈 𝒏 ≔ 𝑶 𝒈 𝒏 ∩ 𝛀 𝒈 𝒏

• Function 𝑓 𝑛 ∈ Θ(𝑔 𝑛 ), if there are constants 𝑐1, 𝑐2 and 𝑛0 s. t. 
𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0, resp. if
𝑓 𝑛 ∈ 𝑂(𝑛) and 𝑓 𝑛 ∈ Ω(𝑛)
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Big-O Notation : Definitions
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o 𝒈 𝒏 ≔ 𝒇 𝒏 | ∀𝒄 > 𝟎 ∃𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛 ), if for all constants 𝑐 > 0, we have 
𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) (for sufficiently large 𝑛, indep. of 𝑐)

𝝎 𝒈 𝒏 ≔ 𝒇 𝒏 | ∀𝒄 > 𝟎 ∃𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ 𝜔(𝑔 𝑛 ), if for all constants 𝑐 > 0, we have 
𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛) (for sufficiently large 𝑛, indep. of 𝑐)

In particular:

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⟹ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⟹ 𝑓 𝑛 ∈ Ω 𝑔 𝑛
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Big-O Notation : Definitions
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𝒇 𝒏 ∈ 𝑶 𝒈 𝒏 :

• 𝑓 𝑛 " ≤ " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows at most as fast as 𝑔(𝑛)

𝒇 𝒏 ∈ 𝛀 𝒈 𝒏 :

• 𝑓 𝑛 " ≥ " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows at least as fast as 𝑔(𝑛)

𝒇 𝒏 ∈ 𝚯 𝒈 𝒏 :

• 𝑓 𝑛 " = " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows equally fast as 𝑔(𝑛)
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Big-O Notation : Intuitively
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𝒇 𝒏 ∈ 𝒐 𝒈 𝒏 :

• 𝑓 𝑛 " < " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows slower than 𝑔(𝑛)

𝒇 𝒏 ∈ 𝝎 𝒈 𝒏 :

• 𝑓 𝑛 " > " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows faster than 𝑔(𝑛)

If 𝑓(𝑛) and 𝑔(𝑛) grow monotonically, we have:

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⟺ 𝑓 𝑛 ∉ Ω 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⟺ 𝑓 𝑛 ∉ 𝑂 𝑔 𝑛
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Big-O Notation : Intuitively



Algorithms and Data StructuresFabian Kuhn

The following definitions hold for monotonically growing functions

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
< ∞

𝑓 𝑛 ∈ Ω 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
> 0

𝑓 𝑛 ∈ Θ 𝑔 𝑛 , 0 < lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
< ∞

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= ∞
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Definition by Limits (simplified)
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Writing Convention:

• 𝑂 𝑔 𝑛 , Ω 𝑔 𝑛 , … are sets (of functions)

• Correct way of writing (in principle): 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

• Very common way of writing: 𝑓 𝑛 = 𝑂 𝑔 𝑛

Examples:

• 𝑇 𝑛 = 𝑂(𝑛2) instead 𝑇 𝑛 ∈ 𝑂 𝑛2

• 𝑇 𝑛 = Ω(𝑛2) instead 𝑇 𝑛 ∈ Ω 𝑛2

• 𝑓 𝑛 = 𝑛2 + 𝑂(𝑛) :

𝑓 𝑛 ∈ 𝑔 𝑛 ∶ ∃ℎ 𝑛 ∈ 𝑂 𝑛 s. t. 𝑔 𝑛 = 𝑛2 + ℎ 𝑛

• 𝑎 𝑛 = 1 + 𝑜 1 ⋅ 𝑏 𝑛

16

Big-O Notation : Remarks



Algorithms and Data StructuresFabian Kuhn

Writing Convention:

• 𝑂 𝑔 𝑛 , Ω 𝑔 𝑛 , … are sets (of functions)

• Correct way of writing (in principle): 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

• Very common way of writing: 𝑓 𝑛 = 𝑂 𝑔 𝑛

Asymptotic Behavior of General Limits:

• Same notation is used more generally, e.g., 𝑓(𝑥) for 𝑥 → 0

• E.g., Taylor approx.: 𝑒𝑥 = 1 + 𝑥 + 𝑂(𝑥2), or 𝑒𝑥 = 1 + 𝑥 + 𝑜 𝑥

Alternative Definition for 𝛀 𝒈 𝒏 :

𝛀 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄, 𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

𝛀 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄 > 𝟎 ∀𝒏𝟎 > 𝟎 ∃𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

– We will use the 1st definition

– The two definitions are only different for non-monotonic functions

17

Big-O Notation : Remarks
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Selection Sort:

• Runtime 𝑇 𝑛 , there are constants 𝑐1, 𝑐2 : 𝑐1𝑛
2 ≤ 𝑇 𝑛 ≤ 𝑐2𝑛

2

𝑇 𝑛 ∈ 𝑂 𝑛2 , 𝑇 𝑛 ∈ Ω 𝑛2 , 𝑇 𝑛 ∈ Θ 𝑛2

• 𝑇(𝑛) grows more than linear in 𝑛: 𝑇 𝑛 ∈ 𝜔(𝑛)

Further examples:

• 𝑓 𝑛 = 10𝑛3, 𝑔 𝑛 = Τ𝑛3 1000 :

• 𝑓 𝑛 = 𝑒𝑛, 𝑔 𝑛 = 𝑛100 :

• 𝑓 𝑛 = Τ𝑛 log2 𝑛 , 𝑔 𝑛 = 𝑛 :

• 𝑓 𝑛 = 𝑛 Τ1 256, 𝑔 𝑛 = 10 ln 𝑛 :

• 𝑓 𝑛 = log10 𝑛 , 𝑔 𝑛 = log2 𝑛 :

• 𝑓 𝑛 = 𝑛 𝑛, 𝑔 𝑛 = 2𝑛 :

18

Big-O Notation : Examples

lim
𝑛→∞

𝑒𝑛

𝑛100
→ ∞

𝑓 𝑛

𝑔 𝑛
=

𝑛

log2 𝑛

=
2 Τ𝑡 2

𝑡

𝑓 𝑛 ∈ Θ 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛

𝑓 𝑛 ∈ Θ 𝑔 𝑛

𝑓 𝑛 ∈ o 𝑔 𝑛

log 𝑛 𝑛 = 𝑛 ⋅ log 𝑛 , log 2𝑛 = 𝑛

log10 𝑛 =
log2 𝑛

log2 10
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InsertionSort(A):

1: for i = 1 to n-1 do

2:   // prefix A[1..i] is already sorted

3:   pos = i

4:   while (pos > 0) and (A[pos] < A[pos-1]) do

5:     swap(A[pos], A[pos–1])

6:     pos = pos - 1

19

Analysis Insertion Sort
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Worst Case Analysis

• Analyze runtime 𝑇(𝑛) for a worst possible input of size 𝑛

• Important / standard way of analyzing algorithms

Best Case Analyse

• Analyze runtime 𝑇(𝑛) for a best possible input of size 𝑛

• Usually not very interesting…

Average Case Analyse

• Analyze runtime 𝑇(𝑛) for a typical input of size 𝑛

• Problem: what is a typical input?
– Standard approach: use a random input

– Not clear, how close real inputs and random inputs are…

– Possible alternative: smoothed analysis (we will not look at this)

20

Worst case, best case, average case
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Quadratic = 2x as large input  4x as long runtime
– For large 𝑛, this already seems to grow quite fast…

Example calculation:

• Assume that the number of basic operations 𝑇 𝑛 = 𝑛2

• Additionally, assume there is 1 basic operation per processor cycle

• For a 1Ghz processor, we get 1 ns per basic operation

21

How good is quadratic runtime?

Input size 𝒏 4 bytes per number Runtime 𝑻(𝒏)

103 numbers ≈ 4KB 103⋅2 ⋅ 10−9 s = 1 ms

106 numbers ≈ 4MB 106⋅2 ⋅ 10−9 s = 16.7 min

109 numbers ≈ 4GB 109⋅2 ⋅ 10−9 s = 31.7 years

too slow for large problems!
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• Divide is trivial  cost 𝑂(1)

• Recursive sorting: We will look at this...

• Merge: We will look at this first...

22

Analysis Merge Sort

Divide

Sort recursively
(by using mergesort)

Merge
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MergeSortRecursive(A, start, end, tmp)         // sort A[start..end-1]
⋮

5:   pos = start; i = start; j = middle

6:   while (pos < end) do

7:     if (i < middle) and (A[i] < A[j]) then

8:       tmp[pos] = A[i]; pos++; i++

9:     else

10:       tmp[pos] = A[j]; pos++; j++

11:   for i = start to end-1 do A[i] = tmp[i]

23

Analysis Merge Step
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Runtime 𝑇(𝑛) consists of:

• Divide and Merge: 𝑂 𝑛

• 2 recursive calls to sort ⌈ Τ𝑛 2⌉ and Τ𝑛 2 elements

Recursive formulation of 𝑻(𝒏):

• There is a constant 𝑏 > 0, s. t.

𝑇 𝑛 ≤ 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ 𝑏 ⋅ 𝑛, T 1 ≤ 𝑏

• We simplify a bit and ignore all the rounding:

𝑻 𝒏 ≤ 𝟐 ⋅ 𝑻
𝒏

𝟐
+ 𝒃 ⋅ 𝒏, 𝑻 𝟏 ≤ 𝒃

24

Analysis Merge Sort
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𝑻 𝒏 ≤ 𝟐 ⋅ 𝑻
𝒏

𝟐
+ 𝒃 ⋅ 𝒏, 𝑻 𝟏 ≤ 𝒃

Let’s just try and see what we get…

25

Analysis Merge Sort
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Recursive equation: 𝑇 𝑛 ≤ 2 ⋅ 𝑇
𝑛

2
+ 𝑏 ⋅ 𝑛, 𝑇 1 ≤ 𝑏

Guess: 𝑇 𝑛 ≤ 𝑏 ⋅ 𝑛 ⋅ 1 + log2 𝑛

Proof by induction:

26

Analysis Merge Sort
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Recursive equation: 𝑇 𝑛 ≤ 2 ⋅ 𝑇
𝑛

2
+ 𝑏 ⋅ 𝑛, 𝑇 1 ≤ 𝑏

Consider the recursion tree:

27

Alternative Analysis of Merge Sort
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Merge Sort Measurements
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Merge Sort Measurements
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The runtime of Merge Sort is 𝑻 𝒏 ∈ 𝑶(𝒏 ⋅ 𝐥𝐨𝐠𝒏).

• grows almost linearly with the input size 𝑛…

How good is this?

• Example calculation:
– Again assume that 1 basic operation = 1 ns

– We will be a bit more conservative than before and assume that
𝑇 𝑛 = 10 ⋅ 𝑛 log 𝑛

30

Summary Analysis Merge Sort

Input size 𝒏 4 byte numbers Runtime 𝑻 𝒏 = 𝟏𝟎 ⋅ 𝒏 𝐥𝐨𝐠 𝒏 𝒏𝟐

210 ≈ 103numbers ≈ 4KB 10 ⋅ 10 ⋅ 210 ⋅ 10−9 s ≈ 0.1 ms 1 ms

220 ≈ 106 numbers ≈ 4MB 10 ⋅ 20 ⋅ 220 ⋅ 10−9 s ≈ 0.2 s 16.7 min

230 ≈ 109 numbers ≈ 4GB 10 ⋅ 30 ⋅ 230 ⋅ 10−9 s ≈ 5.4 min 31.7 years

240 ≈ 1012numbers ≈ 4TB 10 ⋅ 40 ⋅ 240 ⋅ 10−9 s ≈ 122 h > 107 years
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• Runtime depends on how we choose the pivots

• Runtime to sort array of size 𝑛 if pivot partitions array into parts of 
sizes 𝜆𝑛 and 1 − 𝜆 𝑛:

𝑻 𝒏 = 𝑻 𝝀𝒏 + 𝑻 𝟏 − 𝝀 𝒏 + "𝐅𝐢𝐧𝐝 𝐩𝐢𝐯𝐨𝐭 + 𝐃𝐢𝐯𝐢𝐝𝐞“

• Divide:
– We iterate over the array from both sides, 𝑂 1 cost per step
 Time to partition array of length 𝑛: 𝑂(𝑛)

31

Quick Sort : Analysis

𝑥

Divide

Sort recursively
(by using quicksort)
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If we can also find a pivot in time 𝑂(𝑛) such that such that the array 
is partitioned into parts of sizes 𝜆𝑛 and 1 − 𝜆 𝑛:

• There is a constant 𝑏 > 0, s. t.

𝑇 𝑛 ≤ 𝑇 𝜆𝑛 + 𝑇 1 − 𝜆 𝑛 + 𝑏 ⋅ 𝑛, 𝑇 1 ≤ 𝑏

Extreme case I) 𝜆 = Τ1 2 (best case):

𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ 𝑏𝑛, 𝑇 1 ≤ 𝑏

• As for Merge Sort: 𝑇 𝑛 ∈ 𝑂 𝑛 log 𝑛

Extreme case II) 𝜆𝑛 = 1, 1 − 𝜆 𝑛 = 𝑛 − 1 (worst case):

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑏𝑛, 𝑇 1 ≤ 𝑏
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Extreme case II) 𝜆𝑛 = 1, 1 − 𝜆 𝑛 = 𝑛 − 1 (worst case):

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑏𝑛, 𝑇 1 ≤ 𝑏

In this case, we obtain 𝑇 𝑛 ∈ Θ 𝑛2 :
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Partition For Random Pivot:

• Runtime 𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠𝒏) for all inputs
– but only in Erwartungswert and with very high probability

Intuition:

• With probability Τ1 2, we get parts of size ≥ Τ𝑛 4, s. t.

𝑇 𝑛 ≤ 𝑇
𝑛

4
+ 𝑇

3𝑛

4
+ 𝑏𝑛
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Partition For Random Pivot:

• Runtime 𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠𝒏) for all inputs
– but only in Erwartungswert and with very high probability

Analysis:

• We will not do this here
– see, e.g., Cormen et al. or the algorithm theory lecture

• Possible approach: write recursion in terms of expected values

𝔼 𝑇 𝑛 ≤ 𝔼 𝑇 𝑁𝐿 + 𝑇 𝑛 − 𝑁𝐿 + 𝑏𝑛
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Task: Sort sequence 𝑎1, 𝑎2, … , 𝑎𝑛
• Goal: lower bound (worst-case) runtime

Comparison-based sorting algorithms

• Comparisons are the only allowed way to determine the relative 
order between elements

• Hence, the only thing that can influence the sequence of elements 
in the final sorted sequence are comparisons of the kind

𝑎𝑖 = 𝑎𝑗 , 𝑎𝑖 ≤ 𝑎𝑗 , 𝑎𝑖 < 𝑎𝑗 , 𝑎𝑖 ≥ 𝑎𝑗 , 𝑎𝑖 > 𝑎𝑗

• If we assume that the elements are pair-wise distinct, we only 
need comparisons of the form 𝑎𝑖 ≤ 𝑎𝑗

• 1 comparison = 1 basic operation
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Alternative View

• Every program (for a deterministic, comp.-based sorting alg.) can 
be brought into a form where every if/while/…-condition is of the 
following form:

𝐢𝐟 𝑎𝑖 ≤ 𝑎𝑗 𝐭𝐡𝐞𝐧 …

• In each execution of an algorithm, the results of these 
comparisons induce a sequence of T/F (true/false) values:

𝐓𝐅𝐅𝐓𝐓𝐓𝐅𝐓𝐅𝐅𝐓𝐓𝐅𝐅𝐅𝐅𝐅𝐓𝐅𝐓𝐓𝐓…

• This sequence uniquely determines how the values of the array 
are rearranged (permuted) by the algorithm.

• Different inputs with the same values therefore must lead to
different T/F sequences.
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Execution tree:
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• In comparison-based sorting algorithms, the execution depends on 
the initial ordering of the values in the inputs, but it does not 
depend on the actual values.
– We restrict to cases where the values are all distinct.

• W.l.o.g. we can assume that we have to sort the numbers 1,… , 𝑛.

• Different inputs have to be handled differently.

• Different inputs result in different T/F sequences

• Runtime of an execution ≥ length of the resulting T/F sequence

• Worst-Case runtime ≥ Length of longest T/F sequence:
– We want a lower bound

– Count no. of possible inputs we need at least as many T/F sequences...
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Number of possible inputs (input orderings):

Number of T/F sequences of length ≤ 𝑘:

Theorem: Every comparison-based sorting algorithm requires
Ω 𝑛 ⋅ log 𝑛 comparisons in the worst case.
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• Not possible with comparison-based algorithms
– Lower bound also holds for randomized algorithms...

• Sometimes, we can be faster
– If we can exploit special properties of the input

• Example: Sort 𝑛 numbers 𝑎𝑖 ∈ 0,1 :

1. Count number of zeroes and ones in time 𝑂(𝑛)

2. Write solution to array in time 𝑂 𝑛
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Task: 

• Sort integer array 𝐴 of length 𝑛

• We know that for all 𝑖 ∈ {0,… , 𝑛}, 𝐴 𝑖 ∈ {0,… , 𝑘}

Algorithm:

1: counts = new int[k+1]      // new int array of length k

2: for i = 0 to k do counts[i] = 0

3: for i = 0 to n-1 do counts[A[i]]++

4: i = 0;

5: for j = 0 to k do

6:   for l = 1 to counts[j] do

7:     A[i] = j; i++
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