Algorithms and Data Structures Conditional Course

Lecture 2

Runtime Analysis, Sorting II

Fabian Kuhn

Algorithms and Complexity

Runtime Analysis I

- How can we analyze the runtime of an algorithm?
- runtime is different on different computers...
- depends on compiler, programming language, etc.
- We need an abstract measure to express the runtime
- Idea: Count the number of (basic) operations
- instead of directly measuring the time
- the number of basic operations is independent of computer, compiler
- It is a good measure for the runtime if all basic operations require about the same time.

Basic Operations

What is a basic operation?

- Simple arithmetic operations / comparisons
- +, -, *, /, \% (mod), <, >, ==, ...
- One memory access
- reading or writing a variable
- not clear if this is really a basic operation?
- One function call
- Of course only jumping to the function code
- Intuitively: one line of program code
- Better: one line of assembly language code
- Even better (?): one processor cycle
- We will see:It is only important that the number of basic opertions is roughly proportional to the actual running time.

RAM Model

RAM = Random Access Machine

- Standard model to analyze algorithms!
- Basic operations (as "defined") all require one time unit
- In particular, all memory accesses are equally expensive:

Each memory cell (1 machine word) can be read or written in 1 time unit

- In particular ignores memory hierarchies
- In most cases, it is however a reasonable assumption
- There are alternative abstract models:
- to explicitly capture memory hierarchies
- for huge data volumes (cf. big data)
- e.g.: streaming-models: memory has to be read sequentially
- for distributed / parallel architectures
- memory access can be local or over the network...

Runtime analysis II

So far: Number of basic operations is proportional to the runtime

- We can also achieve this without counting the basic operations exactly!

Simplification 1: We only calculate an upper bound (or a lower bound) on the number of basic operations

- such that the upper / lower bound is still proportional to the runtime...
- No. of basic op. can depend on several properties of the input
- Size/length of input, but, e.g., for sorting also the ordering in the input

Simplification 2: Most important parameter is input size n We always consider the runtime $T(n)$ as a function of n.

- And we ignore other properties of the input

Selection Sort: Analysis

SelectionSort(A):
1: for $i=0$ to $n-2$ do
2: minIdx = i $\longleftarrow \leq c_{1}$
3: for $\mathrm{j}=\mathrm{i}$ to $\mathrm{n}-1$ do
4: if $A[j]<A[m i n I d x]$ then
minIdx = j
6: $\operatorname{swap}(\mathrm{A}[\mathrm{i}], \mathrm{A}[\operatorname{minIdx}]) \longleftarrow \leq c_{3}$
\#basic op. $\leq c \cdot \#$ inner for loop iterations

$$
x(n)
$$

$$
x(n)=\sum_{i=0}^{n-2}(n-i)=\sum_{h=2}^{n} h \leq \sum_{h=1}^{n} h=\frac{n(n+1)}{2} \leq n^{2}
$$

Selection Sort: Analysis

SelectionSort(A):
1: for $i=0$ to $n-2$ do
2: minIdx = i $\longleftarrow \leq c_{1}$
3: for $\mathrm{j}=\mathrm{i}$ to $\mathrm{n}-1$ do
$\begin{array}{rr}\text { 4: } & \text { if } A[j]<A[m \\ 5: & \text { minIdx }=j\end{array}$
6: $\operatorname{swap}(\mathrm{A}[\mathrm{i}], \mathrm{A}[\operatorname{minIdx}]) \longleftarrow \leq c_{3}$
\#basic op. $\leq c \cdot \#$ inner for loop iterations
$T(n)$

$$
x(n) \leq n^{2}
$$

Runtime $T(n) \leq c \cdot n^{2}$

Selection Sort: Analysis

$\boldsymbol{T}(\boldsymbol{n})$: Number of basic operations of Selection Sort algorithms for arrays of length n

Lemma: There is a constant $c_{U}>0$, such that $T(n) \leq c_{U} \cdot n^{2}$

Lemma: There is a constant $c_{L}>0$, such that $T(n) \geq c_{L} \cdot n^{2}$

Runtime analysis

Summary

- We can only obtain a value that is proportional to the runtime.
- However, we also do not want anything else:
- Analysis should be independent of computer / compiler / etc.
- We want to have statements that are valid in 10 / 100 /... years
- We will always get statements of the following form:

There is a constant C, such that

$$
T(n) \leq C \cdot f(n) \quad \text { or } \quad T(n) \geq C \cdot f(n)
$$

- The Big-O notation allows to simplify / generalize this kind of statements...

Big-O Notation

- Formalism to describe the asymptotic growth of functions.
- For formal definitions: see next slide...
- There is a const. $C>0$, s.t. $T(n) \leq C \cdot f(n)$ becomes:

$$
T(n) \in O(f(n))
$$

- There is a const. $C>0$, s.t. $T(n) \geq C \cdot g(n)$ becomes:

$$
T(n) \in \Omega(g(n))
$$

- For Selection Sort:

$$
\left.\begin{array}{l}
T(n) \in O\left(n^{2}\right) \\
T(n) \in \Omega\left(n^{2}\right)
\end{array}\right\} T(n) \in \Theta\left(n^{2}\right)
$$

Big-O Notation : Definitions

$\boldsymbol{O}(\boldsymbol{g}(n)):=\left\{\boldsymbol{f}(\boldsymbol{n}) \mid \exists c, \boldsymbol{n}_{0}>0 \forall n \geq \boldsymbol{n}_{\mathbf{0}}: \boldsymbol{f}(\boldsymbol{n}) \leq \boldsymbol{c} \cdot \boldsymbol{g}(\boldsymbol{n})\right\}$

- Function $f(n) \in O(g(n))$, if there are constants c and n_{0} s. t. $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$
$\Omega(\boldsymbol{g}(\boldsymbol{n})):=\left\{\boldsymbol{f}(\boldsymbol{n}) \mid \exists \boldsymbol{c}, \boldsymbol{n}_{0}>\mathbf{0} \forall \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}: \boldsymbol{f}(\boldsymbol{n}) \geq \boldsymbol{c} \cdot \boldsymbol{g}(\boldsymbol{n})\right\}$
- Function $f(n) \in \Omega(g(n))$, if there are constants c and n_{0} s. t. $f(n) \geq c \cdot g(n)$ for all $n \geq n_{0}$
$\Theta(\boldsymbol{g}(\boldsymbol{n})):=\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})) \cap \Omega(\boldsymbol{g}(n))$
- Function $f(n) \in \Theta(g(n))$, if there are constants c_{1}, c_{2} and n_{0} s. t. $c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$ for all $n \geq n_{0}$, resp. if
$f(n) \in O(n)$ and $f(n) \in \Omega(n)$

Big-O Notation : Definitions

$o(g(n)):=\left\{f(n) \mid \forall c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}$

- Function $f(n) \in o(g(n))$, if for all constants $c>0$, we have $f(n) \leq c \cdot g(n)$ (for sufficiently large n, indep. of c)
$\omega(g(n)):=\left\{f(n) \mid \forall c>0 \exists n_{0}>0 \forall n \geq n_{0}: f(n) \geq \boldsymbol{c} \cdot \boldsymbol{g}(n)\right\}$
- Function $f(n) \in \omega(g(n))$, if for all constants $c>0$, we have $f(n) \geq c \cdot g(n)$ (for sufficiently large n, indep. of c)

In particular:

$$
\begin{aligned}
f(n) \in o(g(n)) & \Rightarrow f(n) \in O(g(n)) \\
f(n) \in \omega(g(n)) & \Rightarrow f(n) \in \Omega(g(n))
\end{aligned}
$$

Big-O Notation : Intuitively

$f(n) \in \boldsymbol{O}(\boldsymbol{g}(n)):$

- $f(n) " \leq " g(n)$, asymptotically...
- $f(n)$ asymptotically grows at most as fast as $g(n)$
$f(n) \in \Omega(g(n)):$
- $f(n)$ " \geq " $g(n)$, asymptotically...
- $f(n)$ asymptotically grows at least as fast as $g(n)$
$f(n) \in \Theta(g(n)):$
- $f(n)$ " = " $g(n)$, asymptotically...
- $f(n)$ asymptotically grows equally fast as $g(n)$

Big-O Notation : Intuitively

$f(n) \in \boldsymbol{o}(\boldsymbol{g}(\boldsymbol{n})):$

- $f(n)$ " < " $g(n)$, asymptotically...
- $f(n)$ asymptotically grows slower than $g(n)$
$f(n) \in \omega(g(n)):$
- $f(n)$ " $>$ " $g(n)$, asymptotically...
- $f(n)$ asymptotically grows faster than $g(n)$

If $f(n)$ and $g(n)$ grow monotonically, we have:

$$
\begin{aligned}
& f(n) \in o(g(n)) \Leftrightarrow f(n) \notin \Omega(g(n)) \\
& f(n) \in \omega(g(n)) \Leftrightarrow f(n) \notin O(g(n))
\end{aligned}
$$

Definition by Limits (simplified)

The following definitions hold for monotonically growing functions

$$
\begin{array}{ll}
f(n) \in O(g(n)), & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty \\
f(n) \in \Omega(g(n)), & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0 \\
f(n) \in \Theta(g(n)), & 0<\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty \\
f(n) \in o(g(n)), & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\
f(n) \in \omega(g(n)), & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
\end{array}
$$

Big-O Notation : Remarks

Writing Convention:

- $O(g(n)), \Omega(g(n)), \ldots$ are sets (of functions)
- Correct way of writing (in principle): $f(n) \in O(g(n))$
- Very common way of writing: $f(n)=O(g(n))$

Examples:

- $T(n)=O\left(n^{2}\right)$ instead $T(n) \in O\left(n^{2}\right)$
- $T(n)=\Omega\left(n^{2}\right)$ instead $T(n) \in \Omega\left(n^{2}\right)$
- $f(n)=n^{2}+O(n):$

$$
f(n) \in\left\{g(n): \exists h(n) \in O(n) \text { s.t. } g(n)=n^{2}+h(n)\right\}
$$

- $a(n)=(1+o(1)) \cdot b(n)$

Big-O Notation : Remarks

Writing Convention:

- $O(g(n)), \Omega(g(n)), \ldots$ are sets (of functions)
- Correct way of writing (in principle): $f(n) \in O(g(n))$
- Very common way of writing: $f(n)=O(g(n))$

Asymptotic Behavior of General Limits:

- Same notation is used more generally, e.g., $f(x)$ for $x \rightarrow 0$
- E.g., Taylor approx.: $e^{x}=1+x+O\left(x^{2}\right)$, or $e^{x}=1+x+o(x)$

Alternative Definition for $\boldsymbol{\Omega}(\boldsymbol{g}(\boldsymbol{n})): \quad g(u)=n^{2}, f(n)= \begin{cases}n^{2}, & n \text { even } \\ 1, & n \text { odd }\end{cases}$
$\Omega(g(n)):=\left\{f(n) \mid \exists c, n_{0}>0 \forall n \geq n_{0}: f(n) \geq c \cdot g(n)\right\}$
$\Omega(\boldsymbol{g}(n)):=\left\{\boldsymbol{f}(n) \mid \exists c>0 \forall n_{0}>0 \exists n \geq n_{0}: f(n) \geq c \cdot g(n)\right\}$

- We will use the $1^{\text {st }}$ definition
- The two definitions are only different for non-monotonic functions

Big-O Notation : Examples

Selection Sort:

- Runtime $T(n)$, there are constants $c_{1}, c_{2}: c_{1} n^{2} \leq T(n) \leq c_{2} n^{2}$

$$
T(n) \in O\left(n^{2}\right), \quad T(n) \in \Omega\left(n^{2}\right), \quad T(n) \in \Theta\left(n^{2}\right)
$$

- $T(n)$ grows more than linear in $n: T(n) \in \omega(n)$

Further examples:

- $f(n)=10 n^{3}, g(n)=n^{3} / 1000: f(n) \in \Theta(g(n))$
- $f(n)=e^{n}, g(n)=n^{100}: f(n) \in \omega(g(n))$

$$
\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{100}} \rightarrow \infty
$$

- $f(n)=n / \log _{2} n, g(n)=\sqrt{n} \longrightarrow f(n) \in \omega(g(n))$

$$
\begin{aligned}
\frac{f(n)}{g(n)} & =\frac{\sqrt{n}}{\log _{2} n} \\
& =\frac{2^{t / 2}}{t}
\end{aligned}
$$

- $f(n)=n^{1 / 256}, g(n)=10 \ln n \quad: f(n) \in \omega(g(n))$
- $f(n)=\log _{10} n, g(n)=\log _{2} n \div f(n) \in \Theta(g(n)) \quad \log _{10} n=\frac{\log _{2} n}{\log _{2} 10}$
- $f(n)=n^{\sqrt{n}}, g(n)=2^{n} \quad: f(n) \in \mathrm{o}(g(n))$

Analysis Insertion Sort
InsertionSort(A):
1: for $i=1$ to $n-1$ do
// prefix A[1..i] is already sorted
pos = i
while (pos > 0) and (A[pos] < $A[p o s-1]$) do
swap (A[pos], A[pos-1])
pos = pos - 1
$x(n)$: \#while loopiter

$$
\begin{aligned}
& x(n) \leq \sum_{i=1}^{n-1} i=O\left(n^{2}\right) \\
& x(n) \geqslant \sum_{i=1}^{n-1} 1=\Omega(n)
\end{aligned}
$$

$$
T(n)=O\left(n^{2}\right)
$$

Worst case, best case, average case

Worst Case Analysis

- Analyze runtime $T(n)$ for a worst possible input of size n
- Important / standard way of analyzing algorithms

Best Case Analyse

- Analyze runtime $T(n)$ for a best possible input of size n
- Usually not very interesting...

Average Case Analyse

- Analyze runtime $T(n)$ for a typical input of size n
- Problem: what is a typical input?
- Standard approach: use a random input
- Not clear, how close real inputs and random inputs are...
- Possible alternative: smoothed analysis (we will not look at this)

How good is quadratic runtime?

Quadratic $=2 x$ as large input $\rightarrow 4 x$ as long runtime

- For large n, this already seems to grow quite fast...

Example calculation:

- Assume that the number of basic operations $T(n)=n^{2}$
- Additionally, assume there is 1 basic operation per processor cycle
- For a 1Ghz processor, we get 1 ns per basic operation

Input size n	4 bytes per number	Runtime $T(n)$
10^{3} numbers	$\approx 4 \mathrm{~KB}$	$10^{3 \cdot 2} \cdot 10^{-9} \mathrm{~s}=1 \mathrm{~ms}$
10^{6} numbers	$\approx 4 \mathrm{MB}$	$10^{6 \cdot 2} \cdot 10^{-9} \mathrm{~s}=16.7 \mathrm{~min}$
10^{9} numbers	$\approx 4 \mathrm{~GB}$	$10^{9 \cdot 2} \cdot 10^{-9} \mathrm{~s}=31.7$ years

too slow for large problems!

Analysis Merge Sort

- Divide is trivial \rightarrow cost $O(1)$
- Recursive sorting: We will look at this...
- Merge: We will look at this first...

Analysis Merge Step
MergeSortRecursive(A, start, end, imp)

5: pos = start; i = start; $j=$ middle
6: WU l while (pos < end) do \odot
else
tmp[pos] = ADj]; pos++; $\mathrm{j++}$
W_{M} for $i=$ start to end -1 do $A[i]=\operatorname{tmp}[i] \longleftarrow O(k)$

Analysis Merge Sort

Runtime $T(n)$ consists of:

- Divide and Merge: $O(n)$
- 2 recursive calls to sort $[n / 2\rceil$ and $\lfloor n / 2\rfloor$ elements

Recursive formulation of $\boldsymbol{T}(\boldsymbol{n})$:

- There is a constant $b>0$, s. t.

$$
T(n) \leq T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\underline{\frac{n}{2}}\right\rfloor\right)+\underline{\underline{b \cdot n},} \quad \underline{ }
$$

- We simplify a bit and ignore all the rounding:

$$
\frac{T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+b \cdot n, \quad T(1) \leq b}{\text { assume : u power of } 2}
$$

Analysis Merge Sort

$$
T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+b \cdot n, T(1) \leq b
$$

Let's just try and see what we get...

$$
\begin{aligned}
T(n) & \leq 2 \cdot T\left(\frac{n}{2}\right)+b \cdot n \quad T\left(\frac{n}{2}\right) \leq 2 \cdot T\left(\frac{n}{4}\right)+b \cdot \frac{n}{2} \\
& \leq 4 \cdot T\left(\frac{n}{4}\right)+2 \cdot b \cdot \frac{n}{2}+b \cdot n \\
& =4 \cdot T\left(\frac{n}{4}\right)+2 \cdot b \cdot n \\
& \leq 4\left(2 \cdot T\left(\frac{n}{8}\right)+b \cdot \frac{n}{4}\right)+2 \cdot b n \\
& =8 \cdot T\left(\frac{n}{8}\right)+3 \cdot b \cdot n \quad \text { guess } \\
& \leq 2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+k \cdot b \cdot n \\
& \leq n \cdot T(1)+\log _{2}(n) \cdot b \cdot n \leq b \cdot n\left(1+\log _{2}(n)\right)
\end{aligned}
$$

Guess: $T(n) \leq b \cdot n \cdot\left(1+\log _{2} n\right)$
Proof by induction:
Base: $n=1 \quad T(1) \leqslant b \cdot 1 \cdot\left(1+\log _{2} 1\right)=b$
Step!

$$
\begin{aligned}
T(n) & \leqslant 2 T\left(\frac{n}{2}\right)+b \cdot n \\
& \leqslant 2(b \frac{n}{2}(\underbrace{\left(1+\log _{2} \frac{n}{2}\right.}_{\log _{2} n}))+b n \\
& =b n \log n+b n=b n\left(1+\log _{2} n\right)
\end{aligned}
$$

Alternative Analysis of Merge Sort
Recursive equation: $T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+b \cdot n, T(1) \leq b$
Consider the recursion tree:

Merge Sort Measurements

Merge Sort Measurements

Summary Analysis Merge Sort

The runtime of Merge Sort is $\boldsymbol{T}(\boldsymbol{n}) \in \boldsymbol{O}(\boldsymbol{n} \cdot \log n)$.

- grows almost linearly with the input size n...

How good is this?

- Example calculation:
- Again assume that 1 basic operation = 1 ns
- We will be a bit more conservative than before and assume that

$$
T(n)=10 \cdot n \log n
$$

Input size n	4 byte numbers	Runtime $T(n)=10 \cdot n \log n$	n^{2}
$2^{10} \approx 10^{3}$ numbers	$\approx 4 \mathrm{~KB}$	$10 \cdot 10 \cdot 2^{10} \cdot 10^{-9} \mathrm{~s} \approx 0.1 \mathrm{~ms}$	1 ms
$2^{20} \approx 10^{6}$ numbers	$\approx 4 \mathrm{MB}$	$10 \cdot 20 \cdot 2^{20} \cdot 10^{-9} \mathrm{~s} \approx 0.2 \mathrm{~s}$	16.7 min
$2^{30} \approx 10^{9}$ numbers	$\approx 4 \mathrm{~GB}$	$10 \cdot 30 \cdot 2^{30} \cdot 10^{-9} \mathrm{~s} \approx 5.4 \mathrm{~min}$	31.7 years
$2^{40} \approx 10^{12}$ numbers	$\approx 4 \mathrm{~TB}$	$10 \cdot 40 \cdot 2^{40} \cdot 10^{-9} \mathrm{~s} \approx 122 \mathrm{~h}$	$>10^{7}$ years

Quick Sort : Analysis

- Runtime depends on how we choose the pivots
- Runtime to sort array of size n if pivot partitions array into parts of sizes λn and $(1-\lambda) n$:

$$
\underline{T(n)}=\underline{T(\lambda n)}+\underline{T((1-\lambda) n)}+\underbrace{\text { "Find pivot }+\underbrace{\text { Divide }}}{ }^{\text {Divide: }}
$$

- We iterate over the array from both sides, $O(1)$ cost per step \rightarrow Time to partition array of length $n: O(n)$

Quick Sort : Analysis

If we can also find a pivot in time $O(n)$ such that such that the array is partitioned into parts of sizes λn and $(1-\lambda) n$:

- There is a constant $b>0$, s.t.

$$
T(n) \leq T(\lambda n)+T((1-\lambda) n)+b \cdot n, \quad T(1) \leq b
$$

Extreme case I) $\lambda=1 / 2$ (best case):

$$
T(n) \leq 2 T\left(\frac{n}{2}\right)+b n, \quad T(1) \leq b
$$

- As for Merge Sort: $T(n) \in O(n \log n)$

Extreme case II) $\lambda n=1,(1-\lambda) n=n-1$ (worst case):

$$
T(n)=T(n-1)+b n, \quad T(1) \leq b
$$

Quick Sort : Worst Case Analysis
Extreme case II) $\lambda n=1,(1-\lambda) n=n-1$ (worst case):

$$
T(n)=T(n-1)+b n, \quad T(1) \leq b
$$

In this case, we obtain $T(n) \in \Theta\left(n^{2}\right)$:

$$
\begin{aligned}
T(n) & =T(n-1)+b n \\
& =T(n-2)+b(n-1)+b n \\
& =T(n-3)+b(n-2+n-1+n) \\
& =T(n-\varepsilon)+b(n-k+1+\ldots+n) \\
& \vdots T(1)+b(2+3+\ldots+n) \\
& \leqslant b(1+2+\ldots+n) \\
& =b \cdot \frac{n(n+1)}{2}=\theta\left(n^{2}\right)
\end{aligned}
$$

Guess: $T(n) \leqslant b \cdot \frac{n(n+1)}{2}$
$\frac{\text { Base: }}{(n=1)} T(1) \leqslant b \cdot \frac{1 \cdot 2}{2}=b$
Step:

$$
\begin{aligned}
\bar{T}(n) & \leq T(n-1)+b \cdot n \\
& \leqslant b \frac{(n-1) n}{2}+b n \\
& =b \frac{n(n+1)}{2}
\end{aligned}
$$

Quick Sort With a Random Pivot

Partition For Random Pivot:

- Runtime $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ for all inputs
- but only in Erwartungswert and with very high probability

Intuition:

- With probability $1 / 2$, we get parts of size $\geq n / 4$, s. t.

$$
T(n) \leq T\left(\frac{n}{4}\right)+T\left(\frac{3 n}{4}\right)+b n
$$

Quick Sort With a Random Pivot

Partition For Random Pivot:

- Runtime $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ for all inputs
- but only in Erwartungswert and with very high probability

Analysis:

- We will not do this here
- see, e.g., Cormen et al. or the algorithm theory lecture
- Possible approach: write recursion in terms of expected values

$$
\mathbb{E}[T(n)] \leq \mathbb{E}\left[T\left(N_{L}\right)+T\left(n-N_{L}\right)\right]+b n
$$

Sorting Lower Bound

Task: Sort sequence $a_{1}, a_{2}, \ldots, a_{n}$

- Goal: lower bound (worst-case) runtime

Comparison-based sorting algorithms

- Comparisons are the only allowed way to determine the relative order between elements
- Hence, the only thing that can influence the sequence of elements in the final sorted sequence are comparisons of the kind

$$
a_{i}=a_{j}, a_{i} \leq a_{j}, a_{i}<a_{j}, a_{i} \geq a_{j}, a_{i}>a_{j}
$$

- If we assume that the elements are pair-wise distinct, we only need comparisons of the form $a_{i} \leq a_{j}$
- 1 comparison $=1$ basic operation

Comparison-Based Sorting Algorithms

Alternative View

- Every program (for a deterministic, comp.-based sorting alg.) can be brought into a form where every if/while/...-condition is of the following form:

$$
\text { if }\left(a_{i} \leq a_{j}\right) \text { then } \ldots
$$

- In each execution of an algorithm, the results of these comparisons induce a sequence of T/F (true/false) values:

TFFTTTFTFFTTFFFFFTFTTT ...

- This sequence uniquely determines how the values of the array are rearranged (permuted) by the algorithm.
- Different inputs with the same values therefore must lead to different T / F sequences.

Comp.-Based Sorting: Lower Bound

- In comparison-based sorting algorithms, the execution depends on the initial ordering of the values in the inputs, but it does not depend on the actual values.
- We restrict to cases where the values are all distinct.
- W.I.o.g. we can assume that we have to sort the numbers $1, \ldots, n$.
- Different inputs have to be handled differently.
- Different inputs result in different T/F sequences
- Runtime of an execution \geq length of the resulting T / F sequence
- Worst-Case runtime \geq Length of longest T / F sequence:
- We want a lower bound
- Count no. of possible inputs \rightarrow we need at least as many T/F sequences...

Comp.-Based Sorting: Lower Bound
Number of possible inputs (input orderings):

$$
n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1
$$

$$
\begin{aligned}
& \text { Number of T/F sequences of length } \leq k: L_{\text {ane }}=k: 2^{k} \\
& \frac{1 / 5}{T / 5} \frac{T / \pi}{2} \cdots \sum_{\ldots \leq \varepsilon}^{T / 5} \quad 2^{k}+2^{k-1}+2^{k-2}+\ldots+1 \leq 2^{k+1}
\end{aligned}
$$

Theorem: Every comparison-based sorting algorithm requires $\Omega(n \cdot \log n)$ comparisons in the worst case.

Runtime $\leq T$

$$
\begin{aligned}
2^{T+1} & \geqslant n! \\
& \geqslant \log _{2}(n!) \\
& =\Omega(n \log n)
\end{aligned}
$$

$$
\begin{aligned}
& (n / 2)^{n / 2} \leq n!\leq n^{n} \\
& \frac{n}{2} \cdot \log \left(\frac{n}{2}\right) \leq \log (n!) \leq n \cdot \log (n) \\
& \log (n!)=\theta(n \log n)
\end{aligned}
$$

Sorting in Linear Time

- Not possible with comparison-based algorithms
- Lower bound also holds for randomized algorithms...
- Sometimes, we can be faster
- If we can exploit special properties of the input
- Example: Sort n numbers $a_{i} \in\{0,1\}$:

1. Count number of zeroes and ones in time $O(n)$
2. Write solution to array in time $O(n)$

Counting Sort

Task:

- Sort integer array A of length n
- We know that for all $i \in\{0, \ldots, n\}, A[i] \in\{0, \ldots, k\}$

Algorithm:

1: counts = new int [k+1] // new int array of length k
2: for $i=0$ to k do counts [i] $=0$
3: for $i=0$ to $n-1$ do counts [ALi]]++
4: i = 0;
5: for $\mathrm{j}=0$ to k do σ
6: for $1=1$ to counts [j] do
$O(n+k)$
7: $A[i]=j ; i++$

