University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

UNI
FREIBURG

Algorithms and Datastructures

Summer Term 2021
Sample Solution Exercise Sheet 12

Exercise 1: Knuth-Morris-Pratt Algorithm

Consider the pattern P = BBABAB and the text T = ABBABBABABBABABBA.
(a) Compute the array S of the Knuth-Morris-Pratt algorithm.

(b) Use the Knuth-Morris-Pratt algorithm to find all appearances of P in T. Document the steps
analogously to the lecture.

Sample Solution

(a) S =[-1,0,1,0,1,0,1]
) A BB ABDBADBADBUBADBATBB A
B B ABAB
B B AB A B
B B A B A B v
B B A B A B v
B B A

Exercise 2: Rabin-Karp Algorithm

Let T be a given text of length n and let Py, ..., Py be k patterns, each of length exactly m. The goal
is to know if there is at least one pattern in the text, that is, we want to answer True if there exists
at least one index i € {1,...,k} such that P; € T, and answer False if for any i € {1,...,k}, P, ¢ T.
It is easy to solve this problem in O(k(n + m)) by running the Rabin-Karp algorithm once for each
pattern. Give an algorithm (based on Rabin-Karp) that requires only O(n + km).

Sample Solution

On average, Rabin-Karp takes O(n + m) for searching if a pattern P appears in a text 7', hence we
can trivially run Rabin-Karp &k times, once for each pattern P;, and in this way we would solve the
exercise in k-O(n+m) = O(kn+ km). In any case, we need to spend O(km) in order to compute the
k hash values of the patterns, where each pattern is of length m. So, how to avoid spending O(kn),
and instead spend only O(n)?

Let’s see where we spend this O(kn) time. Using Rabin-Karp, we go through all O(n) positions of the
text, and for each window, we check if the hash value of that portion of the text matches the hash
value of the pattern, and since here we have k patterns, for each window, we perform O(k) checks.
What can we do such that, for each text window, on average, we spend O(1) to check if the hash
value of the text window matches the hash value of one of the patters? We can put the hash values
of the patterns into a hash table, and now we spend O(1) for performing a search, spending in total
O(n+ km).



