Algorithms and Datastructures Summer Term 2022
 Exercise Sheet 4

Due: Wednesday, May 25th, 4pm

Exercise 1: Hashing with Open Addressing

We consider hash tables with open addressing and two different methods for collision resolution: linear probing and double hashing. Let m be the size of the hash table where m is prime. Let $h_{1}(x):=53 \cdot x$ and $h_{2}(x):=1+(x \bmod (m-1))$. We define the following hash functions for collision resolution according to the lecture:

- linear probing: $h_{\ell}(x, i):=\left(h_{1}(x)+i\right) \bmod m$.
- double hashing: $h_{d}(x, i):=\left(h_{1}(x)+i \cdot h_{2}(x)\right) \bmod m$.
(a) Implement a hash table with operations insert and find using the mentioned strategies for collision resolution ${ }^{1}$. You may use the template HashTable.py.
(5 Points)
(b) Create a hash table of size $m>1000$ (m prime) and measure the average time for inserting k keys for $k \in\left\{\left.\left\lfloor\frac{m \cdot i}{50}\right\rfloor \right\rvert\, i=1, \ldots, 49\right\}$ in four variations: Using linear probing / double hashing; inserting k random keys ${ }^{2} /$ the set of keys $\{m \cdot i \mid i=1, \ldots, k\}$. Create a plot showing the four different average runtimes. Discuss your results in erfahrungen.txt.

Exercise 2: Application of Hashtables

Consider the following algorithm:

```
Algorithm 1 algorithm
        \(\triangleright\) Input: Array \(A\) of length \(n\) with integer entries
    for \(i=1\) to \(n-1\) do
        for \(j=0\) to \(i-1\) do
            for \(k=0\) to \(n-1\) do
                if \(|A[i]-A[j]|=A[k]\) then
                            return true
    return false
```

(a) Describe what algorithm computes and analyse its asymptotical runtime.
(3 Points)
Hint: The difference $|A[i]-A[j]|$ may become arbitrarily large.
(b) Describe a different algorithm \mathcal{B} for this problem (i.e., $\mathcal{B}(A)=\operatorname{algorithm}(A)$ for each input A) which uses hashing and takes time $\mathcal{O}\left(n^{2}\right)$ (with proof).
(3 Points)
Hint: You may assume that inserting and finding keys in a hash table needs $\mathcal{O}(1)$ if $\alpha=\mathcal{O}(1)$ (α is the load of the table).

[^0](c) Describe another algorithm for this problem without using hashing which takes time $\mathcal{O}\left(n^{2} \log n\right)$ (with proof).

[^0]: ${ }^{1}$ You can assume that no more than m elements will be inserted to the hash table.
 ${ }^{2}$ Unique random values from $\{0, \ldots, z\}$ with $z \gg m$, e.g., with random.sample (range (z+1), k).

