
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, M. Fuchs,
A. Lehmann, P. Schneider

Algorithms and Datastructures

Summer Term 2022

Sample Solution Exercise Sheet 1
Due: Wednesday, May 4th, 4 pm

Exercise 1: Registration (5 Points)

Register for the online course system Daphne. You can also find the according link on the Website of
this course. Make sure that your data is correct, specifically that you can be reached under the given
email address. Then execute the checkout command on your SVN-repository.1

Exercise 2: Quicksort (5 Points)

Implement the algorithm QuickSort from the lecture with two different options of how to choose
the pivot element: ”Element at first position”, ”Element at random position”. Use the template
QuickSort.py that is provided on the website. Write a unit test for both the quicksort_divide and
the quicksort_recursive method. The unit tests should check at least one non-trivial example. If
there are critical cases that are easy to check (e.g., an empty input), you should make a unit test for
these cases, too.

Sample Solution

C.f. Quicksort.py in the public folder or on the website.

Exercise 3: Time Measurement (5 Points)

Measure the runtime of your QuickSort implementation for the two variants of choosing the pivot and
for two different kinds of inputs. The first kind of inputs are reversed arrays i.e. arrays of the form
[n, n− 1, . . . , 2, 1], the second kind are arrays filled with n random integers.
Repeat this for input sizes n ∈ {100, 200, . . . , 5000}.2 Plot the runtimes of all 4 variants (pivot, input)
into the same chart.3 Use your plots to compare the runtimes and write a short evaluation into the
file experience.txt (c.f., Task 4).

Sample Solution

Figures 1 and 2 show plots of the running times at different scales. We make the following observations:
Quicksort has a super-linear (quadratic) trend for deterministic pivot choice (first element) and input
array sorted in descending order. Quicksort is much faster (more precisely: Θ(n log n) “with high

1Your SVN-repository will be created automatically after your registration to Daphne. The URL is https://daphne.
informatik.uni-freiburg.de/ss2022/AlgoDatCond/svn/your-rz-account-name

2A function to generate the arrays and the time measurements is provided in QuickSort.py
3The differences in runtimes will be most distinct if they are plotted in a single chart with n on the x-axis and the

runtime T (n) on a linear and logarithmic y-axis.

https://daphne.informatik.uni-freiburg.de/ss2020/AlgoDat/
http://ac.informatik.uni-freiburg.de/teaching/ss_20/ad-conditional.php
https://daphne.informatik.uni-freiburg.de/ss2022/AlgoDatCond/svn/your-rz-account-name
https://daphne.informatik.uni-freiburg.de/ss2022/AlgoDatCond/svn/your-rz-account-name


probability”, see lecture week 2) for all other variants where the input array or the choice of pivot is
randomized.

	0

	200

	400

	600

	800

	1000

	1200

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500 	5000

el
ap
se
d
	t
im
e	
m
s

input	size

"qs_detval_detpiv.txt"
"qs_randval_detpiv.txt"
"qs_detval_randpiv.txt"
"qs_randval_randpiv.txt"

Figure 1: The first plot shows the runtimes of all requested variants of sorting algorithms for the
respective inputs over the input size n.

	0.1

	1

	10

	100

	1000

	10000

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500 	4000 	4500 	5000

el
ap
se
d
	t
im
e	
m
s

input	size

"qs_detval_detpiv.txt"
"qs_randval_detpiv.txt"
"qs_detval_randpiv.txt"
"qs_randval_randpiv.txt"

Figure 2: The second plot shows the runtimes of all requested variants of sorting algorithms for the
respective inputs over the input size n. The y axis is logarithmic.

Exercise 4: Submission (5 Points)

Commit your code including the tests and the plots into the SVN, into a subfolder exercise-01

(German for exercise sheet 01). Make sure that there are no errors when you run your code (including
style check and unit tests) on Jenkins. Commit a file experience.txt in which you describe your
experiences with this exercise sheet and any problems that may have appeared.


