Exercise 1: Bad Hash Functions

(10 Points)

Let m be the size of a hash table and $M \gg m$ the largest possible key of the elements we want to store in the table. The following “hash functions” are poorly chosen. Explain for each function why it is not a suitable hash function.

(a) $h : x \mapsto \lfloor \frac{x}{m} \rfloor \mod m$

(b) $h : x \mapsto (2x + 1) \mod m$ (m even).

(c) $h : x \mapsto (x \mod m) + \lfloor \frac{m}{x+1} \rfloor$

(d) For each calculation of the hash value of x one chooses for $h(x)$ a uniform random number from \{0, \ldots, m-1\}

(e) $h : x \mapsto \lfloor \frac{M}{x \cdot p \mod M} \rfloor \mod m$, where p is prime and $\frac{M}{2} < p < M$

(f) For a set of “good” hash functions h_1, \ldots, h_ℓ with $\ell \in \Theta(\log m)$, we first compute $h_1(x)$, then $h_2(h_1(x))$ etc. until $h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$. That is, the function is $h : k \mapsto h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$

Sample Solution

(a) Values are not scattered. m subsequent values have the same hash value.

(b) Only half of the hash table is used. The cells 0, 2, 4, \ldots, $m-2$ stay empty.

(c) $h(m-1) = m$, but the table has only the positions 0, \ldots, $m-1$.

(d) The hash value of x can not be reproduced.

(e) First, consider the function $h' : x \mapsto \lfloor \frac{M}{x} \rfloor \mod m$. h' maps all $x > M/2$ (i.e., half of the keys) to position 1, all x with $M/3 < x \leq M/2$ (i.e. 1/6 of the keys) to position 2 etc. So the table is filled asymmetrically. As the function $x \mapsto x \cdot p \mod M$ is a bijection from \{0, \ldots, M-1\} to \{0, \ldots, M-1\}, h has the same property of an asymmetrical filled table (but compared to h' we do not have that a long sequence of subsequent keys are mapped to the same position which would be another undesirable property, cf. part (a)).

(f) The calculation of a single hash value needs $\Omega(\log m)$.
Exercise 2: (No) Families of Universal Hash Functions \((10 \text{ Points}) \)

(a) Let \(S = \{0, \ldots, M-1\} \) and \(H_1 := \{ h : x \mapsto a \cdot x^2 \mod m \mid a \in S \} \). Show that \(H_1 \) is not \(c \)-universal for constant \(c \geq 1 \) (that is, \(c \) is fixed and must not depend on \(m \)). \((4 \text{ Points}) \)

(b) Let \(m \) be a prime and let \(k = \lceil \log_m M \rceil \). We consider the keys \(x \in S \) in base \(m \) presentation, i.e., \(x = \sum_{i=0}^{k} x_i m^i \). Consider the set of functions from the lecture (week 5, slide 15)

\[
H_2 := \left\{ h : x \mapsto \sum_{i=0}^{k} a_i x_i \mod m \mid a_i \in \{0, \ldots, m-1\} \right\}.
\]

Show that \(H_2 \) is 1-universal.

\((6 \text{ Points}) \)

Hint: Two keys \(x \neq y \) have to differ at some digit \(x_j \neq y_j \) in their base \(m \) presentation.

Sample Solution

(a) For an \(x \in S \) let \(y = x + i \cdot m \in S \) for some \(i \in \mathbb{Z} \setminus \{0\} \). Such a \(y \) exists for any \(x \) if \(M > 2m \). Let \(h \in H_1 \). We obtain

\[
h(y) = a \cdot y^2 \mod m
\equiv a \cdot (x + im)^2 \mod m
\equiv a \cdot (x^2 + 2xim + (im)^2) \mod m
\equiv ax^2 \mod m = h(x). \quad \text{(the vanishing terms are multiples of } m)\]

It follows that \(|\{ h \in H_1 \mid h(x) = h(y) \}| = |H_1| \), so for \(m > c \) we have

\[|\{ h \in H_1 \mid h(x) = h(y) \}| > \frac{c}{m} |H_1|.
\]

This means that for \(m > c \), \(H_1 \) is not \(c \)-universal.

(b) Let \(x, y \in S \) with \(x \neq y \). Let \(x_j \neq y_j \) be the position where \(x \) and \(y \) differ in their base \(m \) representation. Let \(h \in H_2 \) such that \(h(x) = h(y) \). We have

\[
h(x) = h(y)
\iff \sum_{i=0}^{k} a_i x_i \equiv \sum_{i=0}^{k} a_i y_i \mod m
\iff \sum_{i \neq j} a_j (x_j - y_j) \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod m
\iff a_j \equiv (x_j - y_j)^{-1} \sum_{i \neq j} a_i (y_i - x_i) \mod m \quad (x_j - y_j)^{-1} \text{ exists because } m \text{ is prime}
\]

This means that for any values \(a_0, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k \) there is a unique \(a_j \) such that the function \(h \) defined by \(a_0, \ldots, a_k \) is in \(\{ h \in H_2 \mid h(x) = h(y) \} \). So we have \(m^k \) possibilities to choose a function from \(\{ h \in H_2 \mid h(x) = h(y) \} \). It follows

\[
\frac{|\{ h \in H_2 \mid h(x) = h(y) \}|}{|H_2|} = \frac{m^k}{m^{k+1}} = \frac{1}{m}.
\]