

Theoretical Computer Science Bridging Course Introduction / General Info

Summer Term 2022 Fabian Kuhn

Topics

- Foundations of theoretical computer science
- Introduction to logic

No lectures

• There are recordings which you are supposed to watch

Exercises

- There will be weekly exercises which you should do
 - Doing the exercises is not mandatory, but highly recommended

Exam

- A oral exam at the end of the term
 - Details will be published on the course web page a.s.a.p.

About the course

What is the purpose of the course? Who is it targeted to?

- The course is for incoming M.Sc. students who do not have the necessary theory background required by the M.Sc. program.
 - E.g., students who did not study computer science or students from more applied schools, ...

Website

• All necessary information about the course will be published on

http://ac.informatik.uni-freiburg.de/teaching/ss 22/tcs-bridging.php

- Or go to my group's website: <u>http://ac.informatik.uni-freiburg.de</u>
- Then follow teaching summer term 2022 TCS bridging course
- Please check the website for
 - Recordings and slides
 - Exercises and sample solutions
 - Pointers to additional literature
 - (e.g., written lecture notes from an older version of this lecture)
 - Information about the exam

— ...

There will be weekly exercise sheets:

- Exercise sheets are published at the latest on Tuesday on the website
- Exercises are due after one week on the coming Tuesday before the exercise tutorial
 - If you want corrections / comments from your tutor
- Hand in your exercises by email
- If you work in a group, the group needs to hand in one solution
 Make sure that all students participate in solving & writing equally!
- After getting back your exercises, you can meet and discuss the exercises with your tutor
 - On Tuesdays or if additional help is necessary on request

Assistant / Tutor for the course:

• Salwa Faour, <u>salwa.faour@cs.uni-freiburg.de</u>

Weekly Tutorials:

- There is a weekly tutorial on Tuesday from 12:15 14:00
- In the tutorial, we discuss the upcoming exercise sheet and your solutions of the last exercise sheet
 - You are required to actively participate in the tutorials and ask questions.
- Also ask your tutor if you have any questions!

The exercises are the most important part of the course!

- To pass the exam, it is important that you do the exercises
- If you feel comfortable with all the exercises, you should also be able to pass the exam

• When working in groups, make sure that you all participate in solving the questions and in writing the solutions!

Course Topics

Foundations of Theoretical Computer Science

- Automata theory
- Formal languages, grammars
- Turing machines
- Decidability
- Computational complexity

Introduction to Logic

- Propositional logic
- First order logic

Purpose of the Course

Goal: Understand the fundamental capabilities and limitations of computers

- What does it mean to "compute"?
 - Automata theory
- What can be computed?
 - Theory on computability/decidability
- What can be computed efficiently?
 - Computational complexity

Meaning of "Computing"

FREBURG

Mathematical Models

- Turing machines 1930s
- Finite state automata 1940s
- Formal grammars 1950s

Practical Aspects

- Compute architectures 1970s
- Programming languages 1970s
- Compilers 1970s

Is My Function Computable?

Write an algorithm / computer program to compute it

- Can it compute the right answer for every instance?
- Does it always give an answer (in finite time)?
- Then you are done.

Otherwise, there are two options

- There is an algorithm, but you don't know it
- There is no algorithm \rightarrow the problem is unsolvable

Formally proving computability is sometimes hard!

• But you will learn how to approach this...

Is My Function Computable?

UNI

- Many "known" problems are solvable
 - Sorting, searching, knapsack, TSP, ...
- Some problems are not solvable
 - Halting problem
 - Gödel incompleteness theorem
- Don't try to solve unsolvable problems!

Can I Compute My Function Efficiently?

- Some problems are "easy"
 - Can we formally define what this means?
- **Complexity theory** is about this
 - Complexity classes, tools for checking membership
- It is important to know how hard a problem is!

• Feasible problems:

- E.g., sorting, linear programming, LZW compression, primality testing, ...
- Time to solve is polynomial in the size of the input
- Problems that are considered infeasible
 - Some scheduling problems, knapsack, TSP, graph coloring, ...
 - Important open question: "Is P = NP"?

Unfeasible problems

Time exponential in input, e.g., quantified Boolean formula

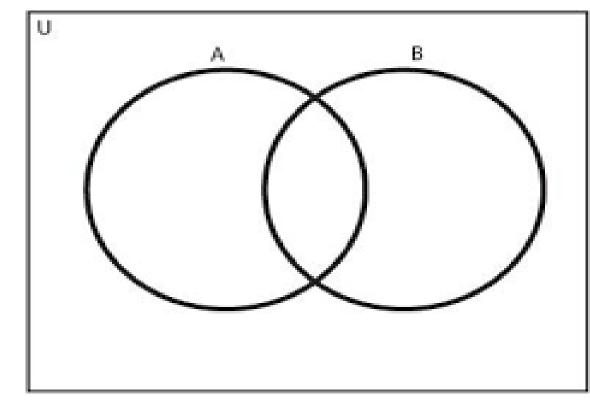
Questions?

Warming up for TCS Bridging Course

- Mathematical objects, tools, notions:
- Sets
 - Sequences
 - Functions
 - Graphs
 - Strings and languages
 - <u>Types of Proof:</u>
 - By construction
 - By contradiction
 - By induction
 - By counterexample

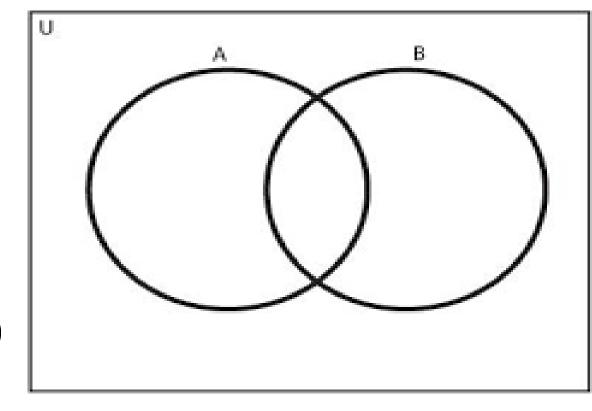
- The alphabet set $\sum = \{a, c, n, o, r\}$
- •*A* = {no, corona}
- *B* = {no, corona, roar, ac}
- Is $A \subseteq B$?
- Is $B \subseteq A$?
- • $A \cup B$?
- • $A \cap B$?
- • $B \setminus A$?
- • $A \setminus B$?

• For any two sets A and B, $A \Delta B = \emptyset \Leftrightarrow A = B$



 $A \Delta B = \emptyset \Leftrightarrow A = B$ *Proof:* \Rightarrow): A Δ B = ($A \setminus$ B) $\cup (B \setminus A)$ = Ø $(A \setminus B) = \emptyset$ and $(B \setminus A) = \emptyset$ $A \subseteq B$ $B \subseteq A$ A=B

• For any two sets A and B,



- Mathematical objects, tools, notions:
- Sets
- Sequences
- Functions
- Graphs
- Strings and languages
- <u>Types of Proof:</u>
- By construction
- By contradiction
- By induction
 - By counterexample

A 10 Year Old Discovered This Famous Formula

$1+2+...+n=\frac{n(n+1)}{2}$

Induction

 Goal: use mathematical induction to prove that a statement on *n* holds true for all natural numbers *n* ≥ 0.

<u>2 STEPS:</u>

• Base step :

prove the statement true for n = 0

• Induction step:

assume the statement holds for any given case n = k, where $k \ge 0$ and use this assumption to prove the statement true for n = k + 1.

- Use proof by induction to prove
- $1+2+...+n=\frac{n(n+1)}{2}$, for $n \ge 1$

• Use proof by induction to prove

•
$$1+2+...+n=\frac{n(n+1)}{2}$$
, for $n \ge 1$

- <u>Base step</u>: for n=1, we have $\frac{1(1+1)}{2} = 1$
- Induction step: assume for any case n=k our statement holds true, where k is some integer k ≥1

i.e. $1+2+...+k = \frac{k(k+1)}{2}$, where k is some integer k ≥ 1

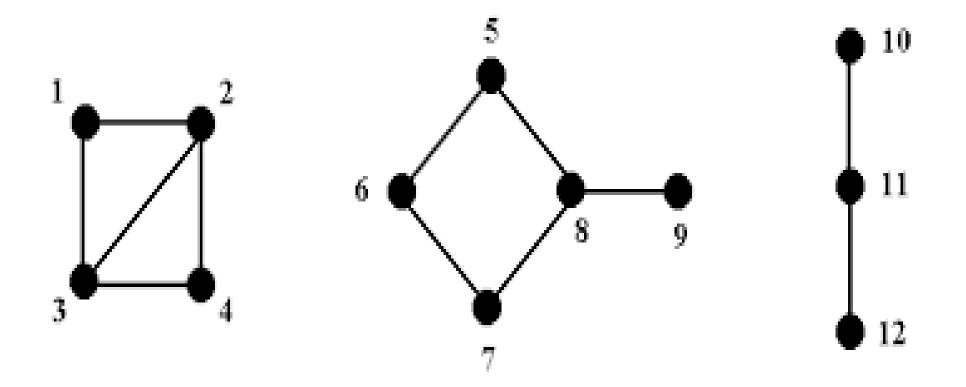
Now, let's prove the statement true for n=k+1

i.e.
$$1+2+...+(k+1) = \frac{(k+1)(k+2)}{2}$$
 (is it true?)
 $1+2+...k+(k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$ (Yes!)

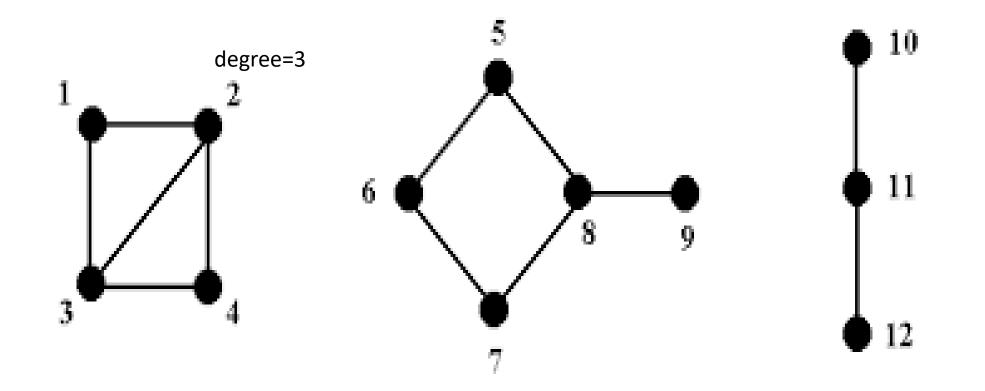
- Mathematical objects, tools, notions:
- Sets
- Sequences
- Functions
- Graphs
 - Strings and languages
 - <u>Types of Proof:</u>
 - By construction
 - By contradiction
 - By induction
 - By counterexample

Graphs

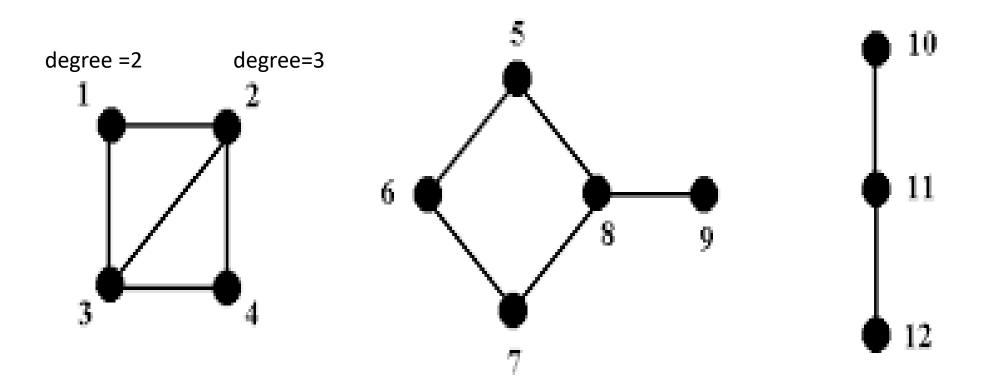
We write G = (V, E).



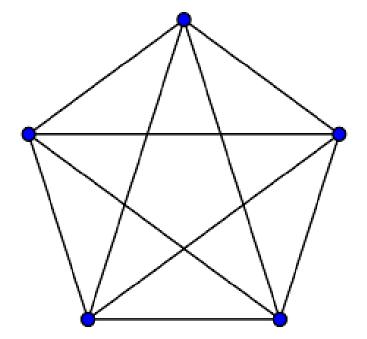
Graphs



Graphs



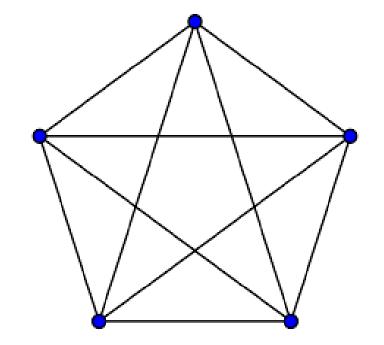
Q. How many edges are there in a *complete* graph on *n* vertices?



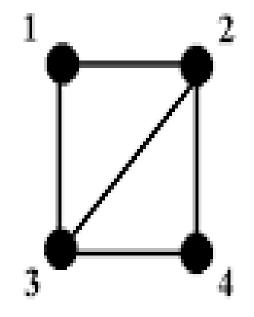
Q. How many edges are there in a *complete* graph on *n* vertices?

$$\frac{\sum_{v \in V} degree(v)}{2} = \frac{n(n-1)}{2} edges$$

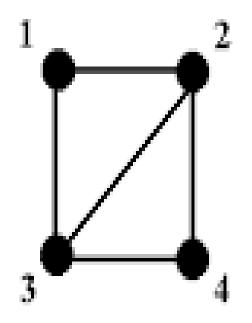
Don't count each edge twice!



- How many edges are there in a simple graph G = (V, E)?
- $\sum_{v \in V} degree(v) =$



- How many edges are there in a simple graph G = (V, E)?
- $\sum_{v \in V} degree(v) = 2 |E|$ (Handshaking Lemma)
- Each edge contributes 2 to the sum on the left.



• Draw a graph on 5 nodes such that each node is of degree 3.

Can you?

Draw a graph on 5 nodes such that each node is of degree 3

- <u>Solution:</u> you can't!
- Sum of all degrees= 5 x 3= 15

• See you Next Week !