
Theoretical Computer Science
Bridging Course

Introduction / General Info
−

Summer Term 2022
Fabian Kuhn

TCS Bridging Course Fabian Kuhn 2

About the Course
Topics
• Foundations of theoretical computer science
• Introduction to logic

No lectures
• There are recordings which you are supposed to watch

Exercises
• There will be weekly exercises which you should do

– Doing the exercises is not mandatory, but highly recommended

Exam
• A oral exam at the end of the term

– Details will be published on the course web page a.s.a.p.

TCS Bridging Course Fabian Kuhn 3

About the course
What is the purpose of the course?
Who is it targeted to?

• The course is for incoming M.Sc. students who do not have the
necessary theory background required by the M.Sc. program.
– E.g., students who did not study computer science or

students from more applied schools, ...

TCS Bridging Course Fabian Kuhn 4

Website
• All necessary information about the course will be published on

http://ac.informatik.uni-freiburg.de/teaching/ss_22/tcs-bridging.php

– Or go to my group’s website: http://ac.informatik.uni-freiburg.de
– Then follow teaching – summer term 2022 – TCS bridging course

• Please check the website for
– Recordings and slides
– Exercises and sample solutions
– Pointers to additional literature

(e.g., written lecture notes from an older version of this lecture)
– Information about the exam
– …

http://ac.informatik.uni-freiburg.de/teaching/ss_22/tcs-bridging.php
http://ac.informatik.uni-freiburg.de/

TCS Bridging Course Fabian Kuhn 5

Exercises
There will be weekly exercise sheets:
• Exercise sheets are published at the latest on Tuesday on the

website
• Exercises are due after one week on the coming Tuesday before

the exercise tutorial
– If you want corrections / comments from your tutor

• Hand in your exercises by email

• If you work in a group, the group needs to hand in one solution
– Make sure that all students participate in solving & writing equally!

• After getting back your exercises, you can meet and discuss the
exercises with your tutor
– On Tuesdays or if additional help is necessary on request

TCS Bridging Course Fabian Kuhn 6

Exercise Tutorials
Assistant / Tutor for the course:
• Salwa Faour, salwa.faour@cs.uni-freiburg.de

Weekly Tutorials:
• There is a weekly tutorial on Tuesday from 12:15 – 14:00
• In the tutorial, we discuss the upcoming exercise sheet and

your solutions of the last exercise sheet
– You are required to actively participate in the tutorials and ask

questions.

• Also ask your tutor if you have any questions!

mailto:salwa.faour@cs.uni-freiburg.de

TCS Bridging Course Fabian Kuhn 7

Exercises
The exercises are the most important part of the course!

• To pass the exam, it is important that you do the exercises
• If you feel comfortable with all the exercises, you should also be

able to pass the exam

• When working in groups, make sure that you all participate in
solving the questions and in writing the solutions!

TCS Bridging Course Fabian Kuhn 8

Course Topics
Foundations of Theoretical Computer Science
• Automata theory
• Formal languages, grammars
• Turing machines
• Decidability
• Computational complexity

Introduction to Logic
• Propositional logic
• First order logic

TCS Bridging Course Fabian Kuhn 9

Purpose of the Course
Goal: Understand the fundamental capabilities and limitations of
computers

• What does it mean to “compute”?
– Automata theory

• What can be computed?
– Theory on computability/decidability

• What can be computed efficiently?
– Computational complexity

TCS Bridging Course Fabian Kuhn 10

Meaning of “Computing”
Mathematical Models

• Turing machines 1930s
• Finite state automata 1940s
• Formal grammars 1950s

Practical Aspects

• Compute architectures 1970s
• Programming languages 1970s
• Compilers 1970s

TCS Bridging Course Fabian Kuhn 11

Is My Function Computable?
Write an algorithm / computer program to compute it
• Can it compute the right answer for every instance?
• Does it always give an answer (in finite time)?
• Then you are done.

Otherwise, there are two options
• There is an algorithm, but you don’t know it
• There is no algorithm the problem is unsolvable

Formally proving computability is sometimes hard!
• But you will learn how to approach this…

TCS Bridging Course Fabian Kuhn 12

Is My Function Computable?
• Many “known” problems are solvable

– Sorting, searching, knapsack, TSP, …

• Some problems are not solvable
– Halting problem
– Gödel incompleteness theorem

• Don’t try to solve unsolvable problems!

TCS Bridging Course Fabian Kuhn 13

Can I Compute My Function Efficiently?
• Some problems are “easy”

– Can we formally define what this means?

• Complexity theory is about this
– Complexity classes, tools for checking membership

• It is important to know how hard a problem is!

• Feasible problems:
– E.g., sorting, linear programming, LZW compression, primality testing, …
– Time to solve is polynomial in the size of the input

• Problems that are considered infeasible
– Some scheduling problems, knapsack, TSP, graph coloring, …
– Important open question: “Is P = NP”?

• Unfeasible problems
– Time exponential in input, e.g., quantified Boolean formula

TCS Bridging Course Fabian Kuhn 14

Questions?

Warming up
for TCS Bridging Course

• Mathematical objects, tools, notions:
• Sets
• Sequences
• Functions
• Graphs
• Strings and languages

• Types of Proof:
• By construction
• By contradiction
• By induction
• By counterexample

•The alphabet set ∑ = { a, c, n, o, r}
•𝐴𝐴 = {no, corona}
•𝐵𝐵 = {no, corona, roar, ac}
• Is 𝐴𝐴
• Is 𝐵𝐵 ⊆ 𝐴𝐴?
•𝐴𝐴 ∪ 𝐵𝐵?
•𝐴𝐴 ∩ 𝐵𝐵?
•𝐵𝐵\𝐴𝐴?
•𝐴𝐴\𝐵𝐵?

⊆ 𝐵𝐵?

•For any two sets 𝐴𝐴 and 𝐵𝐵,
𝐴𝐴 ∆𝐵𝐵 = ∅⇔ 𝐴𝐴 = 𝐵𝐵

•For any two sets 𝐴𝐴 and 𝐵𝐵,
𝐴𝐴 ∆𝐵𝐵 = ∅⇔ 𝐴𝐴 = 𝐵𝐵

Proof:
⇒): A ∆B = (𝐴𝐴 \B) ∪ (𝐵𝐵\ 𝐴𝐴)= ∅

(𝐴𝐴\B)= ∅ and (𝐵𝐵\𝐴𝐴)= ∅

𝐴𝐴 ⊆ 𝐵𝐵 𝐵𝐵 ⊆ 𝐴𝐴

A=B

• Mathematical objects, tools, notions:
• Sets
• Sequences
• Functions
• Graphs
• Strings and languages

• Types of Proof:
• By construction
• By contradiction
• By induction
• By counterexample

Induction

• Goal: use mathematical induction to prove that a statement on n holds true
for all natural numbers n ≥ 0.

2 STEPS:
• Base step :
prove the statement true for n = 0

• Induction step:
assume the statement holds for any given case n= k, where k ≥ 0 and use this
assumption to prove the statement true for n = k + 1.

• Use proof by induction to prove

• 1+2+…+n= 𝑛𝑛(𝑛𝑛+1)
2

, for n ≥ 1

• Use proof by induction to prove

• 1+2+…+n= 𝑛𝑛(𝑛𝑛+1)
2

, for n ≥ 1

• Base step: for n=1, we have 1(1+1)
2

= 1

• Induction step: assume for any case n=k our statement holds true,
where k is some integer k ≥1

i.e. 1+2+…+k = 𝑘𝑘(𝑘𝑘+1)
2

, where k is some integer k ≥1

Now, let’s prove the statement true for n=k+1

i.e. 1+2+…+(k+1)= (𝑘𝑘+1)(𝑘𝑘+2)
2

(is it true?)

1+2+…k + (k+1)= 𝑘𝑘(𝑘𝑘+1)
2

+ (k+1)= 𝑘𝑘 𝑘𝑘+1 +2 𝑘𝑘+1
2

= (𝑘𝑘+1)(𝑘𝑘+2)
2

(Yes!)

• Mathematical objects, tools, notions:
• Sets
• Sequences
• Functions
• Graphs
• Strings and languages

• Types of Proof:
• By construction
• By contradiction
• By induction
• By counterexample

We write 𝐺𝐺 = (𝑉𝑉,𝐸𝐸).

Graphs

Graphs

degree=3

degree=3degree =2

Graphs

Q. How many edges are there in a complete
graph on n vertices?

Q. How many edges are there in a complete
graph on n vertices?

∑𝑣𝑣∈𝑉𝑉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣
2

= 𝑛𝑛(𝑛𝑛−1)
2

edges

Don’t count each edge twice!

• How many edges are there in a simple graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) ?

• ∑𝑣𝑣∈𝑉𝑉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣 =

• How many edges are there in a simple graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) ?

• ∑𝑣𝑣∈𝑉𝑉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣 = 2 |𝐸𝐸| (Handshaking Lemma)

• Each edge contributes 2 to the sum on the left.

Can you?

• Draw a graph on 5 nodes such that each node is of degree 3.

Can you?
Draw a graph on 5 nodes such that each node is of degree 3

• Solution: you can’t!

• Sum of all degrees= 5 x 3= 15

• See you Next Week !

