"
Chapter 2

Broadcast, Convergecast,
and Spanning Trees

Distributed Systems

Summer Term 2023

Fabian Kuhn

UNI

FREIBURG

UNI

Message Passing in Arbitrary Topologies

FREIBURG

Assumption for this chapter:
 Network: message passing system with arbitrary topology

* network topology is given by an undirected graph ¢ = (V/, E)

Distributed Systems Fabian Kuhn 2

Synchronous Message Passing

UNI

FREIBURG

Time is divided into synchronous rounds

round 1 round 2 round 3

| | | | > time
0 1 2 3

In each synchronous round:

1. Each node does some
internal computation

2. Send a message to each
neighbor

3. Receive message from
each neighbor

time complexity = number of rounds

Distributed Systems Fabian Kuhn

Asynchronous Message Passing

UNI

FREIBURG

In this chapter: No failures, but asynchrony

Asynchronous message passing:

* messages are always delivered in finite time
— cf.: finite time > admissible schedule

* message delays are completely unpredictable
e algorithms are event-based:

upon receiving message from neighbor ..., do
some local computation steps

send message(s) to neighbor(s) ...

Distributed Systems Fabian Kuhn

Broadcast :

* Simple, basic communication problem

Problem Description:

A source node s needs to broadcast a message M to all nodes of the
system (network)

 Each node has a unique ID

* Initially, each node knows the IDs of its neighbors

— or it can distinguish its neighbors by individual communication ports to the
pairwise communication links

Distributed Systems Fabian Kuhn 5

Flooding :

* One of the simplest distributed (network) algorithms

Basic idea:
* When receiving M for the first time, forward to all neighbors

Algorithm:

* Source node s:
initially do
send M to all neighbors

 All other nodes u:
upon receiving M from some neighbor v for the first time
if M has not been received before then
send M to all neighbors except v

Distributed Systems Fabian Kuhn 6

Flooding in Synchronous Systems

UNI

FREIBURG

Synchronous systems:
* time divided into synchronous rounds, msg. delay = 1 round

* time complexity: number of rounds

Progress in flooding algorithm:

Distributed Systems Fabian Kuhn

Flooding in Synchronous Systems

UNI

FREIBURG

Synchronous systems:

time divided into synchronous rounds, msg. delay = 1 round

time complexity: number of rounds

Progress in flooding algorithm:

after 1 round:

— all neighbors of s know M

’\%wu\ camrth'vﬁ»
— nodes at distance = 2 from s do not know M '

after 2 rounds: wax staw ca g«sm
— exactly nodes at distance < 2 from s know M S b m,\,7 woda 4|

after r rounds:
— exactly nodes at distance < r from s know M

Distributed Systems Fabian Kuhn 8

UNI
!

FREIBURG

Flooding in Synchronous Systems

Radius: (Graph G = (V,E))
e Givenanodes €V, radius of sin G:

rad(G,s) = maxdist;(s,v)
vev

* radius of G:
rad(G) = minrad(G, s)

SEV

Diameter of G:

diam(G) = max dist;(u,v) = max rad(G, s)

Time complexity of flooding in synchronous systems: rad (G, s)

) diar;z(G) < rﬂs rad(G,s) < diam(G)

Distributed Systems Fabian Kuhn 9

Radius and Diameter

FREIBURG

UNI

Distributed Systems

Fabian Kuhn

10

UNI

Asynchronous Time Complexity

FREIBURG

 Time complexity of flooding in asynchronous systems?
 How is time complexity in asynchronous systems defined?

Assumptions:
 Message delays, time for local computations are arbitrary

— Algorithms cannot use any timing assumptions!

* For analysis:
— message delays < 1 time unit

— local computations take 0 time

Determine asynchronous time complexity:
1. determine running time of a given execution

2. asynch. time complexity = max. running time of any exec.

Distributed Systems Fabian Kuhn 11

Asynchronous Time Complexity :

Running time of an execution:
e assign times to send and receive events such that

— order of all events remains unchanged
— local computations take 0 time
— message delays are at most 1 time unit

— first send event is at time 0
— time of last event is maximized

e essentially: normalize message delays such that the maximum delay is
1 time unit

Definition Asynchronous Time Complexity:
Total time of a worst-case execution in which local computations take
time 0 and all message delays are at most 1 time unit.

Distributed Systems Fabian Kuhn 12

Flooding in Asynchronous Systems

UNI
I

FREIBURG

Theorem: The time complexity of flooding from a source s in an

asynchronous network G is rad (G, s).

S Yy
9 Nk,
‘k‘l Y \6——0————C/
-ék

romale. hue: € <

Distributed Systems

t@e,(v(wsa f{wmb f v

Fabian Kuhn

13

Message Complexity

UNI
!

FREIBURG

Message Complexity: Total number of messages sent (over all nodes)

What is the message complexity of flooding?

3 —
“% Mg Cb“(’g' < Z]&]

Theorem: The message complexity of flooding is O(|E|).
— ongraph G = (V,E)

Distributed Systems Fabian Kuhn 14

Flooding Spanning Tree

UNI

FREIBURG

* The flooding algorithm can be used to compute a spanning tree of the
network.

Idea:
e Source s is the root of the tree

* For all other nodes, neighbor from which M is received first is the
parent node.

Distributed Systems Fabian Kuhn 15

Flooding Spanning Tree Algorithm

Source node s:

initially do
parent := 1 // s is the root
send M to all neighbors

Non-source node u:

upon receiving M from some neighbor v
if M has not been received before then

parent := v
send M to all neighbors except v

Distributed Systems Fabian Kuhn

16

Spanning Tree: Synchronous Systems :

* |n tree: distance of v to root = round in which v is reached

* |In synchronous systems, a node v are reached in round r if and only if
disto(s,v) =r

Shortest Path Tree = BFS Tree (BFS = breadth first search)
* tree which preserves graph distances to root node

Theorem: In synchronous systems, the flooding algorithm constructs a
BFS tree.

Distributed Systems Fabian Kuhn 17

Spanning Tree: Asynchronous Systems

|
FRE:BURG

UNI

How does the spanning tree look if comm. is asynchronous?

Observation: In asynchronous executions, the depth of the tree can be
n — 1 even if the radius/diameter of the graph is 1.

Distributed Systems Fabian Kuhn 18

Convergecast

UNI
!

FREIBURG

 “Opposite” of broadcast
e Given a rooted spanning tree, communicate from all nodes to the root

— starting from the leaves

Example: Compute sum of values in a rooted tree

71N)

Distributed Systems Fabian Kuhn 19

Convergecast Algorithm

Leaf node v:
initially do
send message to parent
(e.g., send input value)

Inner node u:
upon receiving message from child node v
if u has received messages from all children then
send message to parent
(e.g., send sum of all inputs in u’s subtree)

Root node 71
upon receiving message from child node v
if v has received messages from all children then
convergecast terminates

Distributed Systems Fabian Kuhn

20

Convergecast: Analysis & Remarks :

Time Complexity:
Message Complexity:

%Feﬂys 0{ e = p-)

Application of the convergecast algorithm:
 Computing functions, e.g.:

— min, max, sum, average, median, ...
 Termination detection

— inform parent as soon as all nodes in subtree have terminated

Distributed Systems Fabian Kuhn 21

UNI

Flooding/Echo Algorithm

FREIBURG

* |f aleader (root), but no spanning tree exists, flooding and
convergecast can be used together for computing functions, ...

1. Use flooding to construct a tree

2. Use convergecast (echo) to report back to the root when done

Time Complexity of Flooding + Convergecast (Echo):
—V C/—Y_\/
O@ eyl o hee
-

e OO o
QSH\AJ«! O CV\‘7 -

Distributed Systems Fabian Kuhn 22

Constructing Good Trees :

 When combining flooding and convergecast, the time complexity is
linear in the depth of the constructed tree.

* |In synchronous systems, the tree is a BFS tree (shortest path tree), i.e.,
the depth of the tree is O(diam(G))

— optimal time complexity: O(diam(G))

* |n asynchronous systems, the time complexity can be Q(n), even if the
graph has a very small diameter!

e Convergecast / low diameter spanning trees are important!

* How can be construct a BFS tree in an asynchronous system?

Distributed Systems Fabian Kuhn 23

Constructing Shortest Path Tree :

Dijkstra
* Grow tree from source s

* Atintermediate step t, subtree of all nodes at distance < 7 from
source node s

* Next step: add node with min. distance to s

Bellman-Ford
* Each node v keeps a distance estimate d,, to s
— initially: d¢ = 0, d, = oo (forall v # s)
* |n each step, all nodes update their estimate based on neighbor

estimates:

d, —mln{dv, IEIII\}H){d +1}}

Distributed Systems Fabian Kuhn 24

Distributed Dijkstra

In our case, the graph is unweighted
We can therefore grow the tree level by level

— Essentially like in a synchronous execution

Assume, the tree is constructed up to distance r from s
How can we add the next level?

Distributed Systems Fabian Kuhn

25

Distributed Dijkstra :

* Source/root node coordinates the phases

Algorithm for Phase r + 1:

1. Root node broadcasts “start phase r + 1” in current tree

2. Leaf nodes (level r nodes) send “join r + 1” to neighbors

3. Node v receiving “join r + 1” from neighbor u:

1. First such message: u becomes parent of v, v sends ACK to u
2. Otherwise, v sends NACK to u

4. After receiving ACK or NACK from all neighbors, level r nodes report
back to root by starting a convergecast

5. When the convergecast terminates at the root, the root can start the
next phase

Distributed Systems Fabian Kuhn 26

Distributed Dijkstra: Analysis

UNI
I

FREIBURG

Time Complexity: B comcf. o(fluse v+l s O(v)

o el

0(Ze) -

Message Complexity:

M\/\i Cm‘)le&tl')L

Otur Pn)

wol !

Distributed Systems

O(TF)

Mvoes

Fabian Kuhn

27

Distributed Bellman-Ford

Basic Idea:

* Each node u stores an integer d,, with the current guess for the
distance to the root node s

 Whenever a node u can improve d,, u informs its neighbors

Algorithm:
1. |Initialization: dg = 0, forv # s:d,, '= o, parent,, :=1
2. Root s sends “1” to all neigbors

3. For all other nodes u:
upon receiving message “x” with x < d,, from neighbor v do
setd, = x
set parent, = v
send “x 4+ 1” to all neighbors (except v)

Distributed Systems Fabian Kuhn 28

UNI

Distr. Bellman-Ford: Time Complexity

FREIBURG

Theorem: The time complexity of the distributed Bellman-Ford algorithms

s vad(&,s) =O(D)

S
“,“l (o)

va
kﬂj}i
W

Distributed Systems Fabian Kuhn 29

Distr. Bellman-Ford: Message Complexity :

UNI
FREIBURG

Theorem: The message complexity of the distributed Bellman-Ford

algorithmsis O . n) ((hﬁu oo Tg D=0)

\
\E/l i
Vv
W=,
L~
w ==

Tf n-| u\‘)"a@ "{ 0(.4

(bocanse &, c00 — ducun-r)

Distributed Systems Fabian Kuhn 30

|
odNngildd
INN

Distr. Bellman-Ford: Message Complexity

Theorem: The message complexity of the distributed Bellman-Ford
VD).

algorithms is O (|E|

31

Fabian Kuhn

Distributed Systems

Distributed BFS Tree Construction

UNI
!

FREIBURG

Synchronous
» Time: 0(diam(G)), Messages: O(|E|)
* both optimal

Asynchronous
*/ Distributed Dijkstra:
Time: O(diam(G)?), Messages: O(IEI + |V] - diam(G))

 Distributed Bellman-Ford:
Time: O(diam(G)), Messages: O(|E| - [V])

 Best known trade-off between time and messages:
Time: O(diam(G) - log>|V|), Messages: O(|E| + |V| - log3|V])
— based on synchronizers
(generic way of translating synchronous algorithms into asynch. ones)
— We will look at synchronizers in a later lecture...

Distributed Systems Fabian Kuhn 32

Leader Election

UNI
!

FREIBURG

Task: Each node has an input value, compute sum of values

Solution: Compute spanning tree and use convergecast on spanning tree
(i.e., flooding + convergecast)

Problem: What if we don’t have a source/root node?

We need to choose a root node
 known as the leader election problem

Solving leader election:
 E.g.: Choose node with smallest ID

e How to find node with smallest ID?

Distributed Systems Fabian Kuhn 33

Solving Leader Election

UNI

FREIBURG

Choose node with smallest ID

Algorithm for node u:
* Node u stores smallest known ID in variable x,,
1. Initially, u sets x,, :== ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Time Complexity:
%’wch. " O(D)
asppd: : O(D)

Distributed Systems Fabian Kuhn

34

Solving Leader Election

Choose node with smallest ID

Algorithm for node u:
* Node u stores smallest known ID in variable x,,
1. Initially, u sets x,, :== ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Message Complexity:

OTW*VQ

Distributed Systems Fabian Kuhn 35

Solving Leader Election

Choose node with smallest ID

Algorithm for node u:
* Node u stores smallest known ID in variable x,,
1. Initially, u sets x,, :== ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Termination?

Distributed Systems Fabian Kuhn 36

Leader Election

Simple leader election algorithm has time complexity O(diam(G)) and
message complexity O(|V| - |E]).

Problems:

* While time compl. is optimal, msg. complexity is extremely high
* |tis not clear when/how to terminate

* Like for BFS tree construction, there are many possible trade-offs
between time and message complexity, e.g.:

— Time Complexity: 0(|V]), Message Complexity: O(|E| + |V]| - log|V])
— Algorithm is based on constructing a spanning tree in a message-efficient way

e Termination can be solved

— see exercises!

Distributed Systems Fabian Kuhn 37

Improving the Message Complexity :

Improving the Message Complexity Using Randomization
* Assume that the nodes know n

 General Idea: randomly sample a small set of nodes that competes to
be the leader.

Distributed Systems Fabian Kuhn 38

