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Message Passing in Arbitrary Topologies

FREIBURG

Assumption for this chapter:
 Network: message passing system with arbitrary topology

* network topology is given by an undirected graph ¢ = (V/, E)
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Synchronous Message Passing
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Time is divided into synchronous rounds

round 1 round 2 round 3

| | | | > time
0 1 2 3

In each synchronous round:

1. Each node does some
internal computation

2. Send a message to each
neighbor

3. Receive message from
each neighbor

time complexity = number of rounds
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Asynchronous Message Passing
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In this chapter: No failures, but asynchrony

Asynchronous message passing:

* messages are always delivered in finite time
— cf.: finite time > admissible schedule

* message delays are completely unpredictable
e algorithms are event-based:

upon receiving message from neighbor ..., do
some local computation steps

send message(s) to neighbor(s) ...
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Broadcast :

* Simple, basic communication problem

Problem Description:

A source node s needs to broadcast a message M to all nodes of the
system (network)

 Each node has a unique ID

* Initially, each node knows the IDs of its neighbors

— or it can distinguish its neighbors by individual communication ports to the
pairwise communication links
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Flooding :

* One of the simplest distributed (network) algorithms

Basic idea:
* When receiving M for the first time, forward to all neighbors

Algorithm:

* Source node s:
initially do
send M to all neighbors

 All other nodes u:
upon receiving M from some neighbor v for the first time
if M has not been received before then
send M to all neighbors except v
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Flooding in Synchronous Systems
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Synchronous systems:
* time divided into synchronous rounds, msg. delay = 1 round

* time complexity: number of rounds

Progress in flooding algorithm:
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Flooding in Synchronous Systems
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Synchronous systems:

time divided into synchronous rounds, msg. delay = 1 round

time complexity: number of rounds

Progress in flooding algorithm:

after 1 round:

— all neighbors of s know M

’\%wu\ camrth'vﬁ»
— nodes at distance = 2 from s do not know M '

after 2 rounds: wax  staw ca g«sm
— exactly nodes at distance < 2 from s know M S b m,\,7 woda 4|

after r rounds:
— exactly nodes at distance < r from s know M
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Flooding in Synchronous Systems

Radius: (Graph G = (V,E))
e Givenanodes €V, radius of sin G:

rad(G,s) = maxdist;(s,v)
vev

* radius of G:
rad(G) = minrad(G, s)

SEV

Diameter of G:

diam(G) = max dist;(u,v) = max rad(G, s)

Time complexity of flooding in synchronous systems: rad (G, s)

) diar;z(G) < rﬂs rad(G,s) < diam(G)
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Radius and Diameter
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Asynchronous Time Complexity
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 Time complexity of flooding in asynchronous systems?
 How is time complexity in asynchronous systems defined?

Assumptions:
 Message delays, time for local computations are arbitrary

— Algorithms cannot use any timing assumptions!

* For analysis:
— message delays < 1 time unit

— local computations take 0 time

Determine asynchronous time complexity:
1. determine running time of a given execution

2. asynch. time complexity = max. running time of any exec.
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Asynchronous Time Complexity :

Running time of an execution:
e assign times to send and receive events such that

— order of all events remains unchanged
— local computations take 0 time
— message delays are at most 1 time unit

— first send event is at time 0
— time of last event is maximized

e essentially: normalize message delays such that the maximum delay is
1 time unit

Definition Asynchronous Time Complexity:
Total time of a worst-case execution in which local computations take
time 0 and all message delays are at most 1 time unit.
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Flooding in Asynchronous Systems
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Theorem: The time complexity of flooding from a source s in an

asynchronous network G is rad (G, s).
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Message Complexity
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Message Complexity: Total number of messages sent (over all nodes)

What is the message complexity of flooding?

3 —
“% Mg Cb“(’g' < Z]&]

Theorem: The message complexity of flooding is O(|E|).
— ongraph G = (V,E)
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Flooding Spanning Tree
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* The flooding algorithm can be used to compute a spanning tree of the
network.

Idea:
e Source s is the root of the tree

* For all other nodes, neighbor from which M is received first is the
parent node.
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Flooding Spanning Tree Algorithm

Source node s:

initially do
parent := 1 // s is the root
send M to all neighbors

Non-source node u:

upon receiving M from some neighbor v
if M has not been received before then

parent := v
send M to all neighbors except v
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Spanning Tree: Synchronous Systems :

* |n tree: distance of v to root = round in which v is reached

* |In synchronous systems, a node v are reached in round r if and only if
disto(s,v) =r

Shortest Path Tree = BFS Tree (BFS = breadth first search)
* tree which preserves graph distances to root node

Theorem: In synchronous systems, the flooding algorithm constructs a
BFS tree.
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Spanning Tree: Asynchronous Systems
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How does the spanning tree look if comm. is asynchronous?

Observation: In asynchronous executions, the depth of the tree can be
n — 1 even if the radius/diameter of the graph is 1.
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Convergecast
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 “Opposite” of broadcast
e Given a rooted spanning tree, communicate from all nodes to the root

— starting from the leaves

Example: Compute sum of values in a rooted tree

71N )
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Convergecast Algorithm

Leaf node v:
initially do
send message to parent
(e.g., send input value)

Inner node u:
upon receiving message from child node v
if u has received messages from all children then
send message to parent
(e.g., send sum of all inputs in u’s subtree)

Root node 71
upon receiving message from child node v
if v has received messages from all children then
convergecast terminates

Distributed Systems Fabian Kuhn
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Convergecast: Analysis & Remarks :

Time Complexity:
Message Complexity:

%Feﬂys 0{ e = p-)

Application of the convergecast algorithm:
 Computing functions, e.g.:

— min, max, sum, average, median, ...
 Termination detection

— inform parent as soon as all nodes in subtree have terminated
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Flooding/Echo Algorithm
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* |f aleader (root), but no spanning tree exists, flooding and
convergecast can be used together for computing functions, ...

1. Use flooding to construct a tree

2. Use convergecast (echo) to report back to the root when done

Time Complexity of Flooding + Convergecast (Echo):
—V C/—Y_\/
O@ eyl o hee
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Constructing Good Trees :

 When combining flooding and convergecast, the time complexity is
linear in the depth of the constructed tree.

* |In synchronous systems, the tree is a BFS tree (shortest path tree), i.e.,
the depth of the tree is O(diam(G))

— optimal time complexity: O(diam(G))

* |n asynchronous systems, the time complexity can be Q(n), even if the
graph has a very small diameter!

e Convergecast / low diameter spanning trees are important!

* How can be construct a BFS tree in an asynchronous system?
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Constructing Shortest Path Tree :

Dijkstra
* Grow tree from source s

* Atintermediate step t, subtree of all nodes at distance < 7 from
source node s

* Next step: add node with min. distance to s

Bellman-Ford
* Each node v keeps a distance estimate d,, to s
— initially: d¢ = 0, d, = oo (forall v # s)
* |n each step, all nodes update their estimate based on neighbor

estimates:

d, —mln{dv, IEIII\}H){d +1}}

Distributed Systems Fabian Kuhn 24



Distributed Dijkstra

In our case, the graph is unweighted
We can therefore grow the tree level by level

— Essentially like in a synchronous execution

Assume, the tree is constructed up to distance r from s
How can we add the next level?

Distributed Systems Fabian Kuhn
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Distributed Dijkstra :

* Source/root node coordinates the phases

Algorithm for Phase r + 1:

1. Root node broadcasts “start phase r + 1” in current tree

2. Leaf nodes (level r nodes) send “join r + 1” to neighbors

3. Node v receiving “join r + 1” from neighbor u:

1. First such message: u becomes parent of v, v sends ACK to u
2. Otherwise, v sends NACK to u

4. After receiving ACK or NACK from all neighbors, level r nodes report
back to root by starting a convergecast

5. When the convergecast terminates at the root, the root can start the
next phase
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Distributed Dijkstra: Analysis
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Time Complexity: B comcf. o(fluse v+l s O(v)
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Message Complexity:
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Distributed Bellman-Ford

Basic Idea:

* Each node u stores an integer d,, with the current guess for the
distance to the root node s

 Whenever a node u can improve d,, u informs its neighbors

Algorithm:
1. |Initialization: dg = 0, forv # s:d,, '= o, parent,, :=1
2. Root s sends “1” to all neigbors

3. For all other nodes u:
upon receiving message “x” with x < d,, from neighbor v do
setd, = x
set parent, = v
send “x 4+ 1” to all neighbors (except v)
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Distr. Bellman-Ford: Time Complexity
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Theorem: The time complexity of the distributed Bellman-Ford algorithms

s vad(&,s) =O(D)
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Distr. Bellman-Ford: Message Complexity :
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Theorem: The message complexity of the distributed Bellman-Ford

algorithmsis O . n) ((hﬁu oo Tg D=0)
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Distr. Bellman-Ford: Message Complexity

Theorem: The message complexity of the distributed Bellman-Ford
VD).

algorithms is O (|E|

31
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Distributed BFS Tree Construction
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Synchronous
» Time: 0(diam(G)), Messages: O(|E|)
* both optimal

Asynchronous
*/ Distributed Dijkstra:
Time: O(diam(G)?), Messages: O(IEI + |V] - diam(G))

 Distributed Bellman-Ford:
Time: O(diam(G)), Messages: O(|E| - [V])

 Best known trade-off between time and messages:
Time: O(diam(G) - log>|V|), Messages: O(|E| + |V| - log3|V])
— based on synchronizers
(generic way of translating synchronous algorithms into asynch. ones)
— We will look at synchronizers in a later lecture...
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Leader Election
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Task: Each node has an input value, compute sum of values

Solution: Compute spanning tree and use convergecast on spanning tree
(i.e., flooding + convergecast)

Problem: What if we don’t have a source/root node?

We need to choose a root node
 known as the leader election problem

Solving leader election:
 E.g.: Choose node with smallest ID

e How to find node with smallest ID?
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Solving Leader Election
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Choose node with smallest ID

Algorithm for node u:
* Node u stores smallest known ID in variable x,,
1. Initially, u sets x,, :== ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Time Complexity:
%’wch. " O(D)
asppd: : O(D)
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Solving Leader Election

Choose node with smallest ID

Algorithm for node u:
* Node u stores smallest known ID in variable x,,
1. Initially, u sets x,, :== ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Message Complexity:

OTW\*VQ
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Solving Leader Election

Choose node with smallest ID

Algorithm for node u:
* Node u stores smallest known ID in variable x,,
1. Initially, u sets x,, :== ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Termination?
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Leader Election

Simple leader election algorithm has time complexity O(diam(G)) and
message complexity O(|V| - |E]).

Problems:

* While time compl. is optimal, msg. complexity is extremely high
* |tis not clear when/how to terminate

* Like for BFS tree construction, there are many possible trade-offs
between time and message complexity, e.g.:

— Time Complexity: 0(|V]), Message Complexity: O(|E| + |V]| - log|V])
— Algorithm is based on constructing a spanning tree in a message-efficient way

e Termination can be solved

— see exercises!
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Improving the Message Complexity :

Improving the Message Complexity Using Randomization
* Assume that the nodes know n

 General Idea: randomly sample a small set of nodes that competes to
be the leader.
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