



# Chapter 4 Causality, Time, and Global States

### **Distributed Systems**

### **Fabian Kuhn**

UN FREIBURG

Goal: Establish a notion of time in (partially) asynchronous systems

#### Physical time:

- Establish an approximation of real time in a network
- Synchronize local clocks in a network
- Timestamp events (email, sensor data, file access times etc.)
- Synchronize audio and video streams
- Measure signal propagation delays (Localization)
- Wireless (TDMA, duty cycling)
- Digital control systems (ESP, airplane autopilot etc.)

#### Logical time:

- Determine an order on the events in a distributed system
- Establish a global view on the system



**Goal:** Assign a timestamp to all events in an asynchronous messagepassing system

- Allows to give the nodes some notion of time
  - which can be used by algorithms
- Logical clock values: numerical values that increase over time and which are consistent with the observable behavior of the system
- The objective here is not to do clock synchronization:
  Clock Synchronization: compute logical clocks at all nodes which simulate real time and which are tightly synchronized.
  - We might talk about clock synchronization later...



#### **Recall Executions / Schedules**

- An exec. is an alternating sequence of configurations and events
- A schedule *S* is the sequence of events of an execution
  - Possibly including node inputs
- Schedule restriction for node *v*:

 $S|v \coloneqq$  "sequence of events seen by v"

#### **Causal Shuffles**

We say that a schedule S' is a **causal shuffle** of schedule S iff

 $\forall v \in V: \ S | v = S' | v.$ 

**Observation:** If S' is a causal shuffle of S, no node/process can distinguish between S and S'.

### **Causal Order**



Logical clocks are based on a **causal order** of the events

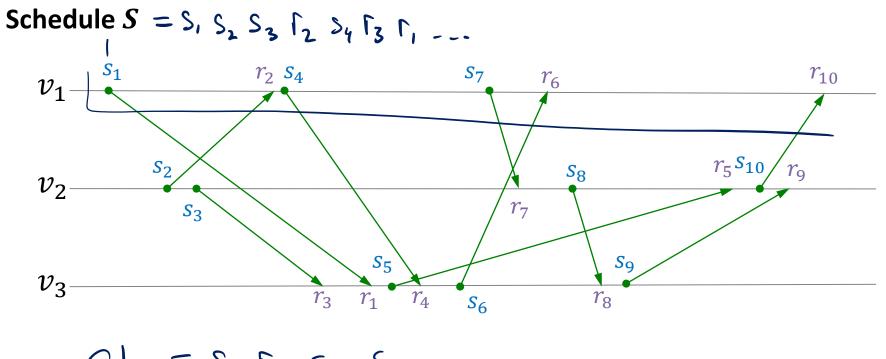
- In the order, event e should occur before event e' if event e provably occurs before event e'
  - In that case, the clock value of e should be smaller than the one of e'

#### For a given schedule *S*:

- The distributed system cannot distinguish *S* from another schedule *S'* if and only if *S'* is a causal shuffle of *S*.
  - causal shuffle  $\implies$  no node can distinguish
  - no causal shuffle  $\implies$  some node can distinguish

## Event e provably occurs before e' if and only if e appears before e' in all causal shuffles of S

### Causal Shuffles / Causal Order Example



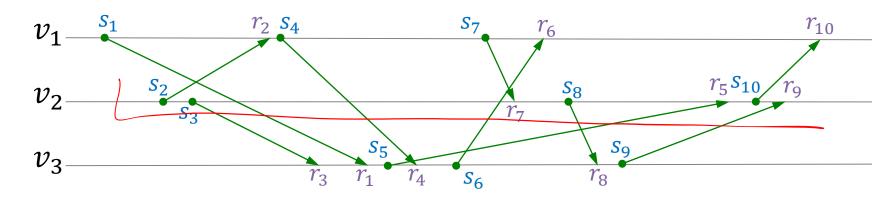
 $S|_{V_1} = S_{1,1}F_{2,1}S_{2,1}S_{2,1}S_{3,1}$ 

UNI FREIBURG

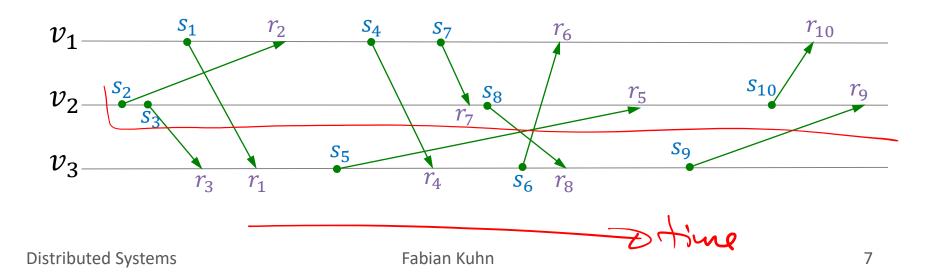
### Causal Shuffles / Causal Order Example







Some Causal Shuffle  $S' = S_{2,1}S_{3,1}S_{1,1}S_{3,1}S_{1,1}S_{2,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{3,1}S_{$ 



### Lamport's Happens-Before Relation



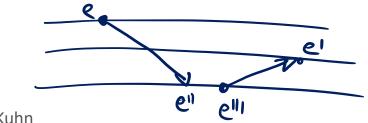
#### **Assumption:** message passing system, only send and receive events

#### Consider two events e and e' occurring at nodes u and u'

- send event occurs at sending node, recv. event at receiving node
- let's define t and t' be the (real) times when e and e' occur

#### We know that e provably occurs before e' if

- 1. The events occur at the same node and e occurs before e'
- 2. Event e is a send event, e' the recv. event of the same message
- 3. There is an event e'' for which we know that provably, e occurs before e'' and e'' occurs before e'





### Lamport's Happens-Before Relation



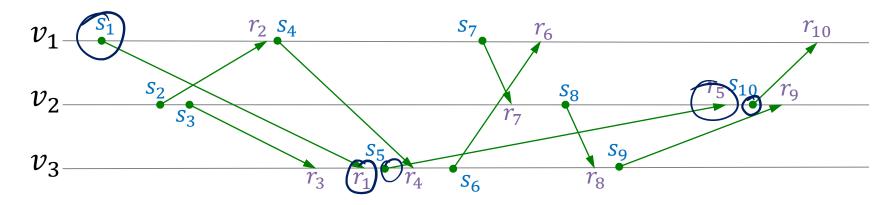
**Definition:** The happens-before relation  $\Rightarrow_S$  on a schedule *S* is a pairwise relation on the send/receive events of *S* and it contains

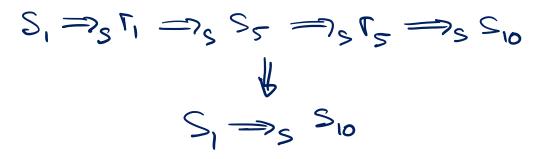
- 1. All pairs (*e*, *e*') where *e* precedes *e*' in *S* and *e* and *e*' are events of the same node/process.
- 2. All pairs (e, e') where e is a send event and e' the receive event for the same message.
- 3. All pairs (e, e') where there is a third event e'' such that  $e \Rightarrow_S e'' \land e'' \Rightarrow_S e'$ 
  - Hence, we take the **transitive closure** of the relation defined by 1. and 2.

### Happens-Before Relation: Example



Schedule S







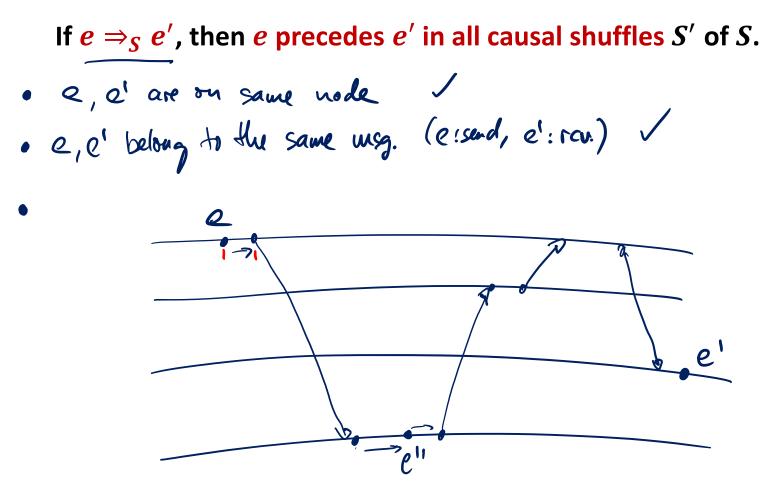
**Theorem:** For a schedule S and two (send and/or receive) events e and e', the following two statements are equivalent:

- a) Event *e* happens-before e', i.e.,  $e \Rightarrow_{S} e'$ .
- b) Event e precedes e' in all causal shuffles S' of S.

#### Some remarks before proving the theorem...

- Shows that the happens-before relation is exactly capturing what we need about the causality between events
  - It captures exactly what is observable about the order of events
- To prove the theorem, we show that
  - 1. a)  $\rightarrow$  b)
  - 2. b)  $\rightarrow$  a)

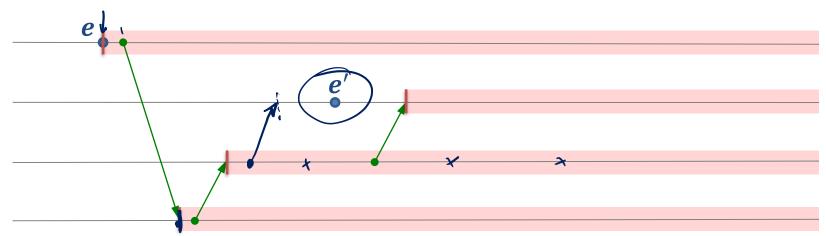






#### If *e* precedes *e'* in all causal shuffles *S'* of *S*, then $e \Rightarrow_S e'$ .

- Proof:  $n(e \rightarrow se')$   $A \rightarrow B$   $T \rightarrow A$
- Show:  $e \neq_S e'$ , there is a shuffle S' such that e' precedes e in S
- W.I.o.g., assume that *e* precedes *e'* in *S* 
  - Consequently, e and e' happen at different nodes
    (otherwise, the order remains the same in all causal shuffles)



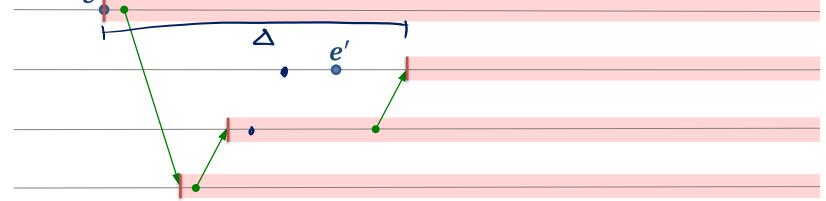
- Events in red part can be shifted by fixed amount  $\boldsymbol{\Delta}$ 



#### If *e* precedes *e'* in all causal shuffles *S'* of *S*, then $e \Rightarrow_S e'$ .

#### Proof:

• Show:  $e \neq_S e'$ , there is a shuffle S' such that e' precedes e in S



- Events in red part can be shifted by fixed amount  $\Delta$ 
  - Consider some message M with send/receive events  $s_M$ ,  $r_M$
  - − If  $s_M$  and  $r_M$  or only  $r_M$  are shifted, message delay gets larger → OK
  - It is not possible to only shift  $s_M$
  - Choose  $\Delta$  large enough to move e past e'



#### Basic Idea:

- 1. Each event *e* gets a clock value  $\tau(e) \in \mathbb{N}$
- 2. If *e* and *e'* are events at the same node and *e* precedes *e'*, then  $\tau(e) < \tau(e')$
- 3. If  $s_M$  and  $r_M$  are the send and receive events of some msg. M,  $\tau(s_M) < \tau(r_M)$

#### **Observation:**

• For clock values  $\tau(e)$  of events e satisfying 1., 2., and 3., we have

$$e \Rightarrow_{S} e' \longrightarrow \tau(e) < \tau(e')$$

− because < relation (on  $\mathbb{N}$ ) is transitive

• Hence, the partial order defined by  $\tau(e)$  is a superset of  $\Rightarrow_s$ 

### Lamport Clocks



#### Algorithm:

- Each node u keeps a counter  $c_u$  which is initialized to 0
- For any non-receive event *e* at node *u*, node *u* computes

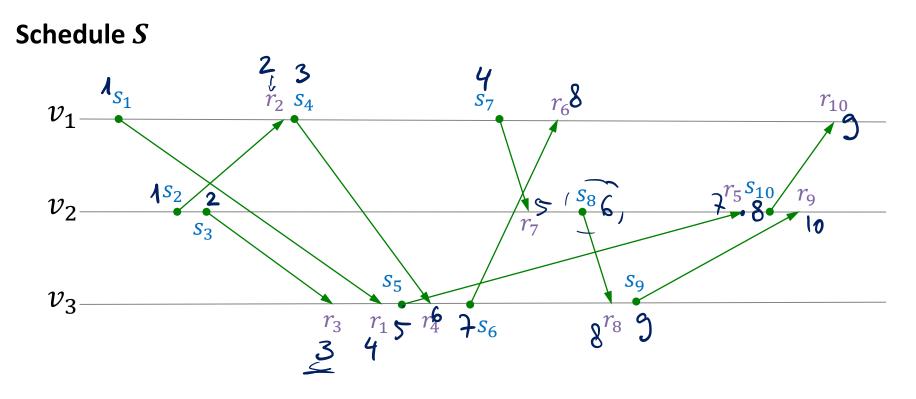
$$c_u \coloneqq c_u + 1; \ \tau(e) \coloneqq c_u$$

- For any send event s at node u, node u attaches the value of  $\tau(s)$  to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$c_u \coloneqq \max\{c_u, \tau(s)\} + 1; \ \tau(r) \coloneqq c_u$$

### Lamport Clocks: Example





#### UNI FREIBURG

#### **Discussion Lamport Clocks:**

- Advantage: no changes in the behavior of the underlying protocol
- Disadvantage: clocks might make huge jumps (when recv. a msg.)

#### Idea by Neiger, Toueg, and Welch:

- Assume nodes have some approximate knowledge of real time
  - e.g., by using a clock synchronization algorithm
- Nodes increase their clock value periodically
- Combine with Lamport clock ideas to ensure safety
- When receiving a message with a time stamp which is larger than the current local clock value, wait with processing the message.

### Fidge-Mattern Vector Clocks

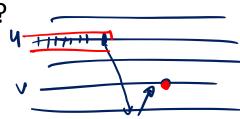
- Lamport clocks give a superset of the happens-before relation
- Can we compute logical clocks to get  $\Rightarrow_S$  exactly?

#### **Vector Clocks:**

- Each node u maintains an vector VC(u) of clock values
  - − one entry  $VC_v(u)$  for each node  $v \in V$
- In the vector VC(e) assigned (by u) to some event e happening at node u, the component x<sub>v</sub> corresponding to v ∈ V refers to the

#### number of events at node v, u knows about when e occurs



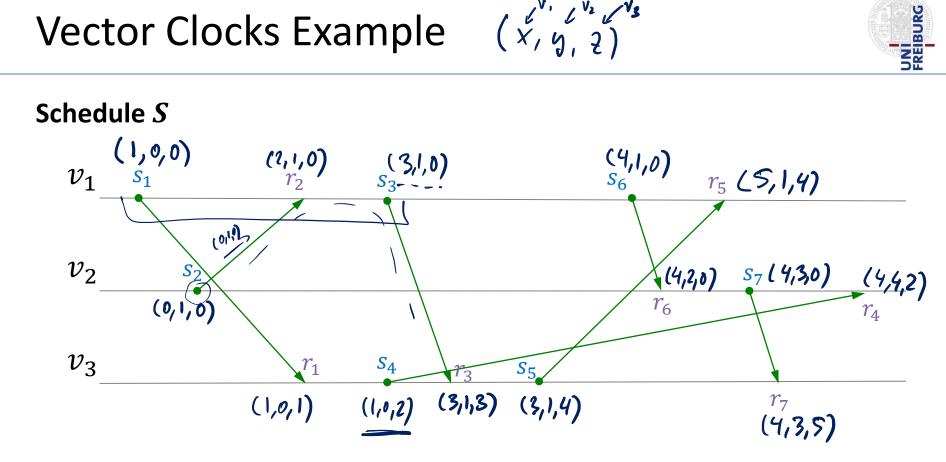


### Vector Clocks Algorithm

- All Nodes u keep a vector VC(u) with an entry for all nodes in V
  - all components are initialized to 0
  - component corresponding to node  $v: VC_v(u)$
- For any non-receive event e at node u, node u computes  $VC_u(u) \coloneqq VC_u(u) + 1; VC(e) \coloneqq VC(u)$
- For any send event s at node u, node u attaches the value of VC(s) to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$\forall v \neq u : VC_{v}(u) \coloneqq \max\{VC_{v}(s), VC_{v}(u)\}; \\ VC_{u}(u) \coloneqq VC_{u}(u) + 1; \\ VC(r) \coloneqq VC(u)$$

#### (x,y,z)Vector Clocks Example







Definition:  $VC(e) < VC(e') \coloneqq$  $(\forall v \in V: VC_v(e) \le VC_v(e')) \land (VC(e) \neq VC(e'))$ 

**Theorem:** Given a schedule S, for any two events e and e',

$$\underline{\operatorname{VC}(e)} < \operatorname{VC}(e') \quad \leftrightarrow \quad \underline{e \Rightarrow_s e'}$$

• see exercises!

#### UNI FREIBURG

#### Synchronizer:

- Algorithm that generates clock pulses that allow to run a synchronous algorithm in an asynchronous network
  - We will discuss synchronizers later

The clock pulses (local round numbers) generated by a synchronizer can also used as logical clocks

- Send events of round r get clock value 2r 1
- Receive events of round r get clock value 2r
- superset of the happens-before relation
- requires to drastically change the protocol and its behavior
  - synchronizer determines when messages can be sent
- a very heavy-weight method to get logical clock values
  - requires a lot of messages

### UNI FREIBURG

#### **Replicated State Machine**

- main application suggested by Lamport in his original paper
- a shared state machine where every node can issue operations
- state machine is simulated by several replicas

#### Solution:

- add current clock value (and issuer node ID) to every operation
- operations have to be carried out in order of clock values / IDs

#### • Safety:

- all replicas use same order of operations
- order of operations is a possible actual order (consistent with local views)

#### • Liveness:

progress is guaranteed if nodes regularly send messages to each other

### **Global States**



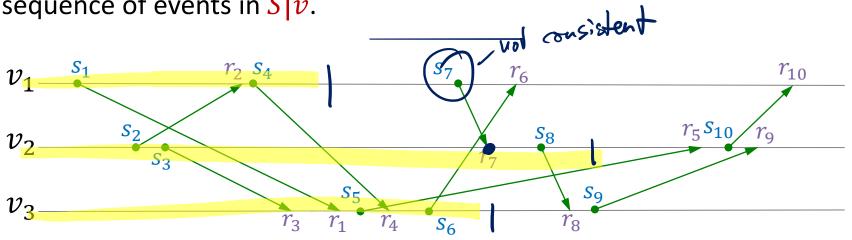
- Sometimes the nodes of a distributed system need to figure out the global state of the system
  - e.g., to find out if some property about the system state is true
- Executions/schedules which lead to the same happens-before relation (i.e., causal shifts) cannot be distinguished by the system.
- Generally not possible to record the global state at any given time of the execution
- Best solution: A global state which is consistent with all local views
  i.e., a state which could have been true at some time
- Called a consistent or global snapshot of the system and based on consistent cuts of the schedule

### Consistent Cut



#### Cut

Given a schedule *S*, a cut is a subset *C* of the events of *S* such that for all nodes  $v \in V$ , the events in *C* happening at v form a prefix of the sequence of events in S | v.

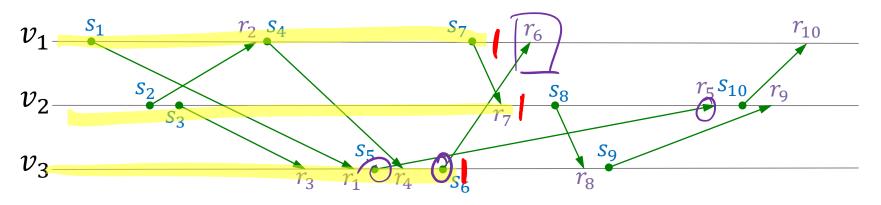


### UNI FREIBURG

#### **Consistent Cut**

Given a schedule S, a consistent cut C is cut such that for all events  $e \in C$ and all events f in S, it holds that

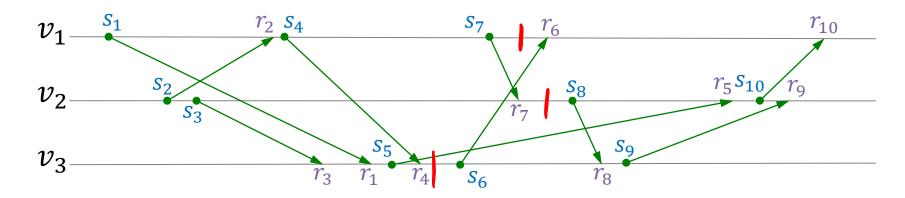
$$f \Rightarrow_S e \rightarrow f \in C$$



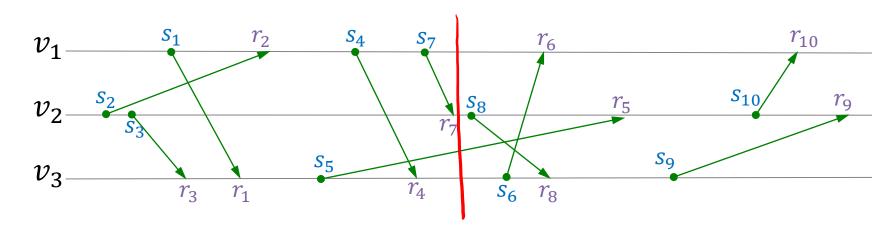
### **Consistent Cut**



Schedule S



#### Some Causal Shuffle S'



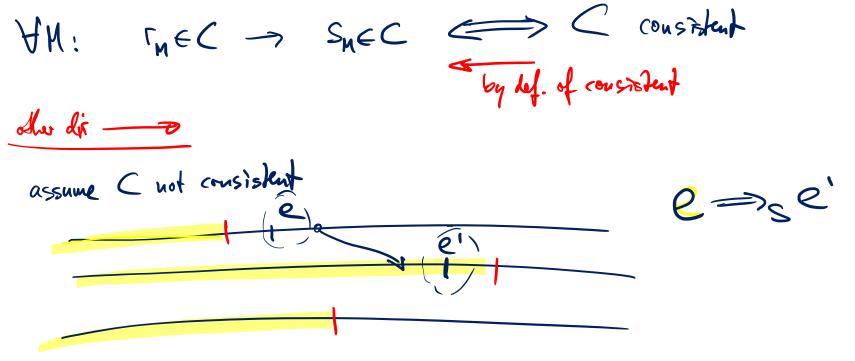
Distributed Systems

Fabian Kuhn

### **Consistent Cuts**



**Claim:** Given a schedule S, a cut C is a consistent cut if and only if for each message M with send event  $s_M$  and receive event  $r_M$ , if  $r_M \in C$ , then it also holds that  $s_M \in C$ .





#### **Consistent Snapshot = Global Snapshot = Consistent Global State**

• A consistent snapshot is a global system state which is consistent with all local views.

#### Global System State (for schedule S)

- A vector of intermediate states (in S) of all nodes and a description of the messages currently in transit
  - Remark: If nodes keep logs of messages sent and received, the local states contain the information about messages in transit.

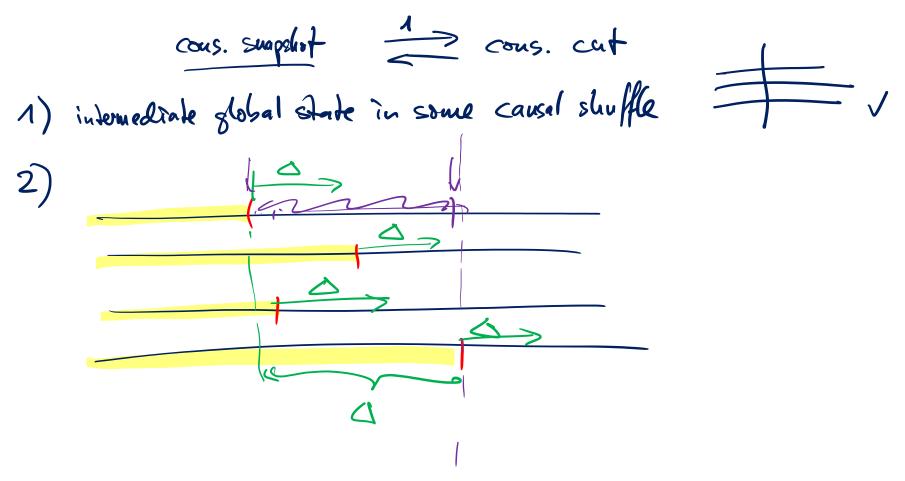
#### **Consistent Snapshot**

• A global system state which is an intermediate global state for some causal shuffle of *S* (consistent with all local views)

### **Consistent Snapshot**



**Claim:** A global system state is a **consistent snapshot if and only if** it corresponds to the node states of some **consistent cut** *C*.





#### **Using Logical Clocks**

 Assume that each event e has a clock value τ(e) such that for two events e, e',

$$e \Rightarrow_S e' \longrightarrow \tau(e) < \tau(e')$$

• Given  $\tau$ , define  $C(\tau)$  as the set of events e with  $\tau(e) \leq \tau_0$ 

**Claim:**  $\forall \tau \geq 0$ :  $C(\tau)$  is a consistent cut.

#### **Remark:** Not always clear how to choose $\tau$

- $-\tau$  large: not clear how long it takes until snapshot is computed
- τ small: snapshot is "less up-to-date"



Goals: Compute a consistent snapshot in a running system

#### Assumptions:

- Does not require logical clocks
- Channels are assumed to have FIFO property
- No failures
- Network is (strongly) connected
- Any node can issue a new snapshot

#### **Remark:** The FIFO property can always be guaranteed

- sender locally numbers messages on each outgoing channel
- messages with smaller numbers have to be processed before messages with larger numbers
- works as long as messages are not lost



#### **Overview:**

- Assume that node *s* initiates the snapshot computation
- The times for recording the state at different nodes is determined by sending around *marker* messages
- When receiving the first *marker* message, a node records its state and sends *marker* messages to all (outgoing) neighbors
- On each incoming channel, the set of messages which are received between recording the state and receiving the *marker* message (on this channel) are in transit in the snapshot.
- After receiving a *marker* message on all incoming channels, a nodes has finished its part of the snapshot computation

#### Initially: Node s records its state

#### When node *u* receives a *marker* message from node *v*:

if u has not recorded its state then

u records its state

set of msg. in transit from v to u is empty

u starts recording messages on all other incoming channels

else

the set of msg. in transit from v to u is the set of recorded msg. since starting to record msg. on the channel

#### (Immediately) after node *u* records its state:

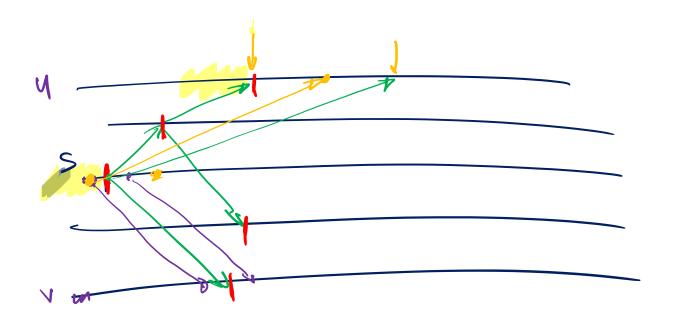
Node *u* sends *marker* msg. on all outgoing channels

before sending any other message on those channels





**Theorem:** The Chandy-Lamport algorithm computes a consistent cut and it correctly computes the messages in transit over this cut.





**Theorem:** The Chandy-Lamport algorithm computes a consistent cut and it correctly computes the messages in transit over this cut.



#### **Testing Stable System Properties**

- A stable property is a property which once true, remains true
- More formally: a predicate *P* on global configurations such that if *P* is true for some configuration *C*, *P* also holds for all configurations which can be reached from *C*

#### Testing a stable property:

• test whether property holds for a consistent snapshot

#### Safety: Only evaluates to true if the property holds

- the current state is reachable from every consistent snapshot state

#### Liveness: If the property holds, it will eventually be detected

 initiating a snapshot (using Chandy-Lamport) leads to snapshot configuration which is reachable from the current configuration



#### **Distributed Garbage Collection**

- Erase objects (e.g., variables stored at some node(s)) to which no reference exists any more
- References can be at other nodes, in messages in transit, ...
- "No reference to object *x*" is a stable system property

#### **Distributed Deadlock Detection**

- Two processes/nodes wait for each other
- Deadlock is also a stable property

#### **Distributed Termination Detection**

- "Distributed computation has terminated" is a stable property
- Note, need also see messages in transit