
Chapter 4

Causality, Time,
and Global States

Distributed Systems

Fabian Kuhn

Distributed Systems Fabian Kuhn 2

Time in Distributed Systems

Goal: Establish a notion of time in (partially) asynchronous systems

Physical time:

• Establish an approximation of real time in a network

• Synchronize local clocks in a network

• Timestamp events (email, sensor data, file access times etc.)

• Synchronize audio and video streams

• Measure signal propagation delays (Localization)

• Wireless (TDMA, duty cycling)

• Digital control systems (ESP, airplane autopilot etc.)

Logical time:

• Determine an order on the events in a distributed system

• Establish a global view on the system

Distributed Systems Fabian Kuhn 3

Logical Clocks

Goal: Assign a timestamp to all events in an asynchronous message-
passing system

• Allows to give the nodes some notion of time
– which can be used by algorithms

• Logical clock values: numerical values that increase over time and
which are consistent with the observable behavior of the system

• The objective here is not to do clock synchronization:

Clock Synchronization: compute logical clocks at all nodes which
simulate real time and which are tightly synchronized.
– We might talk about clock synchronization later...

Distributed Systems Fabian Kuhn 4

Observable Behavior

Recall Executions / Schedules

• An exec. is an alternating sequence of configurations and events

• A schedule 𝑆 is the sequence of events of an execution
– Possibly including node inputs

• Schedule restriction for node 𝑣:
𝑆|𝑣 ≔ "sequence of events seen by 𝑣"

Causal Shuffles

We say that a schedule 𝑺′ is a causal shuffle of schedule 𝑺 iff

∀𝒗 ∈ 𝑽: 𝑺 𝒗 = 𝑺′ 𝒗.

Observation: If 𝑆′ is a causal shuffle of 𝑆, no node/process can distinguish
between 𝑆 and 𝑆′.

Distributed Systems Fabian Kuhn 5

Causal Order

Logical clocks are based on a causal order of the events

• In the order, event 𝑒 should occur before event 𝑒′ if event 𝑒 provably
occurs before event 𝑒′
– In that case, the clock value of 𝑒 should be smaller than the one of 𝑒′

For a given schedule 𝑺:

• The distributed system cannot distinguish 𝑆 from another schedule 𝑆′ if
and only if 𝑆′ is a causal shuffle of 𝑆.
– causal shuffle ⟹ no node can distinguish

– no causal shuffle ⟹ some node can distinguish

Event 𝒆 provably occurs before 𝒆′ if and only if
𝒆 appears before 𝒆′ in all causal shuffles of 𝑺

Distributed Systems Fabian Kuhn 6

Causal Shuffles / Causal Order Example

Schedule 𝑺

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems Fabian Kuhn 7

Causal Shuffles / Causal Order Example

Schedule 𝑺

Some Causal Shuffle 𝑺′

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems Fabian Kuhn 8

Lamport’s Happens-Before Relation

Assumption: message passing system, only send and receive events

Consider two events 𝒆 and 𝒆′ occurring at nodes 𝒖 and 𝒖′

– send event occurs at sending node, recv. event at receiving node

– let’s define 𝑡 and 𝑡′ be the (real) times when 𝑒 and 𝑒′ occur

We know that 𝒆 provably occurs before 𝒆′ if

1. The events occur at the same node and 𝑒 occurs before 𝑒′

2. Event 𝑒 is a send event, 𝑒′ the recv. event of the same message

3. There is an event 𝑒′′ for which we know that provably,
𝑒 occurs before 𝑒′′ and 𝑒′′ occurs before 𝑒′

Distributed Systems Fabian Kuhn 9

Lamport’s Happens-Before Relation

Definition: The happens-before relation ⇒𝑺 on a schedule 𝑆 is a pairwise
relation on the send/receive events of 𝑆 and it contains

1. All pairs 𝑒, 𝑒′ where 𝑒 precedes 𝑒′ in 𝑆 and 𝑒 and 𝑒′ are events of
the same node/process.

2. All pairs (𝑒, 𝑒′) where 𝑒 is a send event and 𝑒′ the receive event for
the same message.

3. All pairs 𝑒, 𝑒′ where there is a third event 𝑒′′ such that
𝑒 ⇒𝑆 𝑒

′′ ∧ 𝑒′′ ⇒𝑆 𝑒′
– Hence, we take the transitive closure of the relation defined by 1. and 2.

Distributed Systems Fabian Kuhn 10

Happens-Before Relation: Example

Schedule 𝑺

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems Fabian Kuhn 11

Happens-Before and Causal Shuffles

Theorem: For a schedule 𝑆 and two (send and/or receive) events
𝑒 and 𝑒′, the following two statements are equivalent:

a) Event 𝑒 happens-before 𝑒′, i.e., 𝒆 ⇒𝑺 𝒆
′.

b) Event 𝑒 precedes 𝑒′ in all causal shuffles 𝑆′ of 𝑆.

Some remarks before proving the theorem…

• Shows that the happens-before relation is exactly capturing what we
need about the causality between events
– It captures exactly what is observable about the order of events

• To prove the theorem, we show that
1. a) ⟶ b)

2. b) ⟶ a)

Distributed Systems Fabian Kuhn 12

Happens-Before and Causal Shuffles

If 𝒆 ⇒𝑺 𝒆
′, then 𝒆 precedes 𝒆′ in all causal shuffles 𝑺′ of 𝑺.

Distributed Systems Fabian Kuhn 13

If 𝒆 precedes 𝒆′ in all causal shuffles 𝑺′ of 𝑺, then 𝒆 ⇒𝑺 𝒆
′.

Proof:

• Show: 𝑒 ⇏𝑆 𝑒
′, there is a shuffle 𝑆′ such that 𝑒′ precedes 𝑒 in 𝑆

• W.l.o.g., assume that 𝑒 precedes 𝑒′ in 𝑆
– Consequently, 𝑒 and 𝑒′ happen at different nodes

(otherwise, the order remains the same in all causal shuffles)

• Events in red part can be shifted by fixed amount 𝚫

Happens-Before and Causal Shuffles

𝒆

𝒆′

Distributed Systems Fabian Kuhn 14

If 𝒆 precedes 𝒆′ in all causal shuffles 𝑺′ of 𝑺, then 𝒆 ⇒𝑺 𝒆
′.

Proof:

• Show: 𝑒 ⇏𝑆 𝑒
′, there is a shuffle 𝑆′ such that 𝑒′ precedes 𝑒 in 𝑆

• Events in red part can be shifted by fixed amount 𝚫
– Consider some message 𝑀 with send/receive events 𝑠𝑀, 𝑟𝑀
– If 𝑠𝑀 and 𝑟𝑀 or only 𝑟𝑀 are shifted, message delay gets larger → OK

– It is not possible to only shift 𝑠𝑀
– Choose Δ large enough to move 𝑒 past 𝑒′

Happens-Before and Causal Shuffles

𝒆

𝒆′

Distributed Systems Fabian Kuhn 15

Lamport Clocks

Basic Idea:

1. Each event 𝑒 gets a clock value 𝜏 𝑒 ∈ ℕ

2. If 𝑒 and 𝑒′ are events at the same node and 𝑒 precedes 𝑒′, then
𝜏 𝑒 < 𝜏 𝑒′

3. If 𝑠𝑀 and 𝑟𝑀 are the send and receive events of some msg. 𝑀,
𝜏 𝑠𝑀 < 𝜏 𝑟𝑀

Observation:

• For clock values 𝜏 𝑒 of events 𝑒 satisfying 1., 2., and 3., we have

𝒆 ⇒𝑺 𝒆
′ ⟶ 𝝉 𝒆 < 𝝉 𝒆′

– because < relation (on ℕ) is transitive

• Hence, the partial order defined by 𝜏(𝑒) is a superset of ⇒𝑠

Distributed Systems Fabian Kuhn 16

Lamport Clocks

Algorithm:

• Each node 𝑢 keeps a counter 𝑐𝑢 which is initialized to 0

• For any non-receive event 𝑒 at node 𝑢, node 𝑢 computes

𝑐𝑢 ≔ 𝑐𝑢 + 1; 𝜏 𝑒 ≔ 𝑐𝑢

• For any send event 𝑠 at node 𝑢, node 𝑢 attaches the value of 𝜏 𝑠 to
the message

• For any receive event 𝑟 at node 𝑢 (with corresponding send event 𝑠),
node 𝑢 computes

𝑐𝑢 ≔ max{ 𝑐𝑢, 𝜏(𝑠)} + 1; 𝜏(𝑟) ≔ 𝑐𝑢

Distributed Systems Fabian Kuhn 17

Lamport Clocks: Example

Schedule 𝑺

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems Fabian Kuhn 18

Neiger-Toueg-Welch Clocks

Discussion Lamport Clocks:

• Advantage: no changes in the behavior of the underlying protocol

• Disadvantage: clocks might make huge jumps (when recv. a msg.)

Idea by Neiger, Toueg, and Welch:

• Assume nodes have some approximate knowledge of real time
– e.g., by using a clock synchronization algorithm

• Nodes increase their clock value periodically

• Combine with Lamport clock ideas to ensure safety

• When receiving a message with a time stamp which is larger than the
current local clock value, wait with processing the message.

Distributed Systems Fabian Kuhn 19

Fidge-Mattern Vector Clocks

• Lamport clocks give a superset of the happens-before relation

• Can we compute logical clocks to get ⇒𝑆 exactly?

Vector Clocks:

• Each node 𝑢 maintains an vector VC 𝑢 of clock values
– one entry VC𝑣(𝑢) for each node 𝑣 ∈ 𝑉

• In the vector VC 𝑒 assigned (by 𝑢) to some event 𝑒 happening at node
𝑢, the component 𝑥𝑣 corresponding to 𝑣 ∈ 𝑉 refers to the

number of events at node 𝒗, 𝒖 knows about when 𝒆 occurs

Distributed Systems Fabian Kuhn 20

Vector Clocks Algorithm

• All Nodes 𝑢 keep a vector VC(𝑢) with an entry for all nodes in 𝑉
– all components are initialized to 0

– component corresponding to node 𝑣: VC𝑣(𝑢)

• For any non-receive event 𝑒 at node 𝑢, node 𝑢 computes

VC𝑢 𝑢 ≔ VC𝑢 𝑢 + 1; VC 𝑒 ≔ VC(𝑢)

• For any send event 𝑠 at node 𝑢, node 𝑢 attaches the value of VC 𝑠 to
the message

• For any receive event 𝑟 at node 𝑢 (with corresponding send event 𝑠),
node 𝑢 computes

∀𝑣 ≠ 𝑢: VC𝑣 𝑢 ≔ max VC𝑣 𝑠 , VC𝑣 𝑢 ;
VC𝑢 𝑢 ≔ VC𝑢 𝑢 + 1;
VC 𝑟 ≔ VC(𝑢)

Distributed Systems Fabian Kuhn 21

Vector Clocks Example

Schedule 𝑺

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2

𝑠3

𝑠4 𝑠5

𝑠6

𝑠7

𝑟1

𝑟2

𝑟3

𝑟5

𝑟6

𝑟7

𝑟4

Distributed Systems Fabian Kuhn 22

Vector Clocks and Happens-Before

Definition: 𝐕𝐂 𝒆 < 𝐕𝐂 𝒆′ ≔

∀𝒗 ∈ 𝑽:𝐕𝐂𝒗 𝒆 ≤ 𝐕𝐂𝒗 𝒆′ ∧ 𝐕𝐂 𝒆 ≠ 𝑽𝑪(𝒆′)

Theorem: Given a schedule 𝑆, for any two events 𝑒 and 𝑒′,

𝐕𝐂 𝒆 < 𝐕𝐂 𝒆′ ⟷ 𝒆 ⇒𝒔 𝒆′

• see exercises!

Distributed Systems Fabian Kuhn 23

Logical Clocks vs. Synchronizers

Synchronizer:

• Algorithm that generates clock pulses that allow to run a synchronous
algorithm in an asynchronous network
– We will discuss synchronizers later

The clock pulses (local round numbers) generated by a synchronizer can
also used as logical clocks

• Send events of round 𝑟 get clock value 2𝑟 − 1

• Receive events of round 𝑟 get clock value 2𝑟

• superset of the happens-before relation

• requires to drastically change the protocol and its behavior
– synchronizer determines when messages can be sent

• a very heavy-weight method to get logical clock values
– requires a lot of messages

Distributed Systems Fabian Kuhn 24

Application of Logical Times

Replicated State Machine

• main application suggested by Lamport in his original paper

• a shared state machine where every node can issue operations

• state machine is simulated by several replicas

Solution:

• add current clock value (and issuer node ID) to every operation

• operations have to be carried out in order of clock values / IDs

• Safety:
– all replicas use same order of operations

– order of operations is a possible actual order (consistent with local views)

• Liveness:
– progress is guaranteed if nodes regularly send messages to each other

Distributed Systems Fabian Kuhn 25

Global States

• Sometimes the nodes of a distributed system need to figure out the
global state of the system
– e.g., to find out if some property about the system state is true

• Executions/schedules which lead to the same happens-before relation
(i.e., causal shifts) cannot be distinguished by the system.

• Generally not possible to record the global state at any given time of
the execution

• Best solution: A global state which is consistent with all local views
– i.e., a state which could have been true at some time

• Called a consistent or global snapshot of the system and based on
consistent cuts of the schedule

Distributed Systems Fabian Kuhn 26

Consistent Cut

Cut

Given a schedule 𝑆, a cut is a subset 𝐶 of the events of 𝑆 such that for all
nodes 𝑣 ∈ 𝑉, the events in 𝐶 happening at 𝑣 form a prefix of the
sequence of events in 𝑆|𝑣.

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems Fabian Kuhn 27

Consistent Cut

Consistent Cut

Given a schedule 𝑆, a consistent cut 𝐶 is cut such that for all events 𝑒 ∈ 𝐶
and all events 𝑓 in 𝑆, it holds that

𝒇 ⇒𝑺 𝒆 ⟶ 𝒇 ∈ 𝑪

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems Fabian Kuhn 28

Consistent Cut

Schedule 𝑺

Some Causal Shuffle 𝑺′

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

𝑣1

𝑣2

𝑣3

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5
𝑠6

𝑠7

𝑠8

𝑠9

𝑠10

𝑟1

𝑟2

𝑟3 𝑟4

𝑟6

𝑟7

𝑟8

𝑟5

𝑟10

𝑟9

Distributed Systems Fabian Kuhn 29

Consistent Cuts

Claim: Given a schedule 𝑆, a cut 𝐶 is a consistent cut if and only if for each
message 𝑀 with send event 𝑠𝑀 and receive event 𝑟𝑀, if 𝑟𝑀 ∈ 𝐶, then it
also holds that 𝑠𝑀 ∈ 𝐶.

Distributed Systems Fabian Kuhn 30

Consistent Snapshot

Consistent Snapshot = Global Snapshot = Consistent Global State

• A consistent snapshot is a global system state which is consistent with
all local views.

Global System State (for schedule 𝑺)

• A vector of intermediate states (in 𝑆) of all nodes and a description of
the messages currently in transit
– Remark: If nodes keep logs of messages sent and received, the local states

contain the information about messages in transit.

Consistent Snapshot

• A global system state which is an intermediate global state for some
causal shuffle of 𝑆 (consistent with all local views)

Distributed Systems Fabian Kuhn 31

Consistent Snapshot

Claim: A global system state is a consistent snapshot if and only if it
corresponds to the node states of some consistent cut 𝐶.

Distributed Systems Fabian Kuhn 32

Computing a Consistent Snapshot

Using Logical Clocks

• Assume that each event 𝑒 has a clock value 𝜏(𝑒) such that for two
events 𝑒, 𝑒′,

𝑒 ⇒𝑆 𝑒
′ ⟶ 𝜏 𝑒 < 𝜏 𝑒′

• Given 𝜏, define 𝐶 𝜏 as the set of events 𝑒 with 𝜏 𝑒 ≤ 𝜏0

Claim: ∀𝜏 ≥ 0: 𝐶 𝜏 is a consistent cut.

Remark: Not always clear how to choose 𝜏
– 𝜏 large: not clear how long it takes until snapshot is computed

– 𝜏 small: snapshot is “less up-to-date”

Distributed Systems Fabian Kuhn 33

Chandy-Lamport Snapshot Algorithm

Goals: Compute a consistent snapshot in a running system

Assumptions:

• Does not require logical clocks

• Channels are assumed to have FIFO property

• No failures

• Network is (strongly) connected

• Any node can issue a new snapshot

Remark: The FIFO property can always be guaranteed
– sender locally numbers messages on each outgoing channel

– messages with smaller numbers have to be processed before messages with larger
numbers

– works as long as messages are not lost

Distributed Systems Fabian Kuhn 34

Chandy-Lamport Snapshot Algorithm

Overview:

• Assume that node 𝑠 initiates the snapshot computation

• The times for recording the state at different nodes is determined by
sending around marker messages

• When receiving the first marker message, a node records its state and
sends marker messages to all (outgoing) neighbors

• On each incoming channel, the set of messages which are received
between recording the state and receiving the marker message (on this
channel) are in transit in the snapshot.

• After receiving a marker message on all incoming channels, a nodes
has finished its part of the snapshot computation

Distributed Systems Fabian Kuhn 35

Chandy-Lamport Snapshot Algorithm

Initially: Node 𝑠 records its state

When node 𝒖 receives a marker message from node 𝒗:

if 𝑢 has not recorded its state then
𝑢 records its state
set of msg. in transit from 𝑣 to 𝑢 is empty
𝑢 starts recording messages on all other incoming channels

else
the set of msg. in transit from 𝑣 to 𝑢 is the set of recorded msg.
since starting to record msg. on the channel

(Immediately) after node 𝒖 records its state:

Node 𝑢 sends marker msg. on all outgoing channels
– before sending any other message on those channels

Distributed Systems Fabian Kuhn 36

Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and
it correctly computes the messages in transit over this cut.

Distributed Systems Fabian Kuhn 37

Chandy-Lamport Snapshot Algorithm

Theorem: The Chandy-Lamport algorithm computes a consistent cut and
it correctly computes the messages in transit over this cut.

Distributed Systems Fabian Kuhn 38

Applications of Consistent Snapshots

Testing Stable System Properties

• A stable property is a property which once true, remains true

• More formally: a predicate 𝑃 on global configurations such that if 𝑃 is
true for some configuration 𝐶, 𝑃 also holds for all configurations which
can be reached from 𝐶

Testing a stable property:

• test whether property holds for a consistent snapshot

Safety: Only evaluates to true if the property holds
– the current state is reachable from every consistent snapshot state

Liveness: If the property holds, it will eventually be detected
– initiating a snapshot (using Chandy-Lamport) leads to snapshot configuration

which is reachable from the current configuration

Distributed Systems Fabian Kuhn 39

Applications of Consistent Snapshots

Distributed Garbage Collection

• Erase objects (e.g., variables stored at some node(s)) to which no
reference exists any more

• References can be at other nodes, in messages in transit, ...

• “No reference to object 𝑥” is a stable system property

Distributed Deadlock Detection

• Two processes/nodes wait for each other

• Deadlock is also a stable property

Distributed Termination Detection

• “Distributed computation has terminated” is a stable property

• Note, need also see messages in transit

