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Overview

• Introduction

• Consensus #1: Shared Memory

• Consensus #2: Wait-free Shared Memory

• Consensus #3: Read-Modify-Write Shared Memory

• Consensus #4: Synchronous Systems

• Consensus #5: Byzantine Failures

• Consensus #6: A Simple Algorithm for Byzantine Agreement

• Consensus #7: The Queen Algorithm

• Consensus #8: The King Algorithm

• Consensus #9: Byzantine Agreement Using Authentication

• Consensus #10: A Randomized Algorithm

• Shared Coin

• Most slides by R. Wattenhofer (ETHZ)
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Consensus More Formally

Setting:

• 𝑛 processes/threads/nodes 𝑣1, 𝑣2, … , 𝑣𝑛
• Each process has an input 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒟

• Each (non-failing) process computes an output 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ 𝒟

Agreement:

The outputs of all non-failing processes are equal.

Validity:

If all inputs are equal to 𝑥, all outputs are equal to 𝑥.

Termination:
All non-failing processes terminate after a finite number of steps.
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Impossibility

??? ???

Theorem
There is no deterministic asynchronous wait-free 
consensus algorithm using read/write atomic registers.
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The Consensus Hierarchy

1

• Read/Write 
Registers

2

• Test&Set

• Fetch&Inc

• Fetch&Add

• Swap

… ∞

• CAS

• LL/SC
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Consensus #4: Synchronous Systems

• One can sometimes tell if a processor has crashed
– Timeouts

– Broken TCP connections

• Can one solve consensus at least in synchronous systems?

• Model
– All communication occurs

in synchronous rounds

– Complete communication graph

p1

p2

p3

p4p5
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Crash Failures

• Broadcast: Send a message to all nodes in one round
– At the end of the round everybody receives the message a

– Every process can broadcast a value in each round

• Crash Failures: A broadcast can fail if a process crashes
– Some of the messages may be lost, i.e., they are never received

p1

p2

p3

p4p5

a

a

aa

a

a

aa
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p4p5

a

a

a

a

Faulty 
Processor
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Process disappears after failure

p1

p3

p4

p5

Failure

Round 1 Round 2 Round 3 Round 4 Round 5
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Consensus Repetition

• Input: everybody has an initial value

• Agreement: everybody must decide on the same value

• Validity conditon: If everybody starts with the same value, everybody 
must decide on that value

2
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32

Start
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Each process:

1. Broadcast own value

2. Decide on the minimum of all received values

A Simple Consensus Algorithm

Including the 
own value

Note than only 
one round is 
needed!
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• Broadcast values and decide on minimum  Consensus!

• Validity condition is satisfied: If everybody starts with the same initial 
value, everybody sticks to that value (minimum)

1

0

4

32

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0

0

0

00

Execution Without Failures
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• The failed processor doesn’t broadcast its value to all processors

• Decide on minimum  No consensus!

1

0

4

32

0,1,2,3,4 1,2,3,4

1,2,3,4 0,1,2,3,4

0

0

1

01

fail

Execution With Failures
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• If an algorithm solves consensus for 𝑓 failed processes, we say it is an 
𝑓-resilient consensus algorithm

• Example: The input and output of a 3-resilient consensus alg.

• Refined validity condition:
All processes decide on a value that is available initially

1

1

Finish

1

0

2

34

Start

𝑓-Resilient Consensus Algorithm
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An 𝑓-Resilient Consensus Algorithm

Each process:

Round 𝟏:
Broadcast own value

Round 𝟐 to round 𝒇 + 𝟏:
Broadcast the minimum of the received values
unless it has been sent before

End of round 𝒇 + 𝟏:
Decide on the minimum value received
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1

0

4

32

An 𝑓-Resilient Consensus Algorithm

• Example: 𝑓 = 2 failures, 𝑓 + 1 = 3 rounds needed
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1

0

4

32

1,2,3,4 1,2,3,4

1,2,3,4 0,1,2,3,4

Failure 1

0

An 𝑓-Resilient Consensus Algorithm

• Round 1: Broadcast all values to everybody
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• Round 2: Broadcast all new values to everybody

1 4

32

0,1,2,3,4 1,2,3,4

1,2,3,4 0,1,2,3,4

Failure 1

0

Failure 2

An 𝑓-Resilient Consensus Algorithm
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• Round 3: Broadcast all new values to everybody

1 4

2

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 1

0

Failure 2

0

An 𝑓-Resilient Consensus Algorithm



Theory of Distributed Systems Fabian Kuhn 19

• Decide on minimum  Consensus!

0 0

0

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 1

0

Failure 2

0

An 𝑓-Resilient Consensus Algorithm
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• If there are 𝑓 failures and 𝑓 + 1 rounds, then there is a round with no 
failed process

• Example: 5 failures, 6 rounds: 1 2

No failure

3 4 5 6

Analysis
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Analysis

• At the end of the round with no failure
– Every (non faulty) process knows about all the values of all the other participating 

processes

– This knowledge doesn’t change until the end of the algorithm

• Therefore, everybody will decide on the same value

• However, as we don’t know the exact position of this round, we have 
to let the algorithm execute for 𝑓 + 1 rounds

• Validity: When all processes start with the same input value, then 
consensus is that value
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Theorem

Proof idea:

• Show that 𝑓 rounds are not enough if 𝑛 ≥ 𝑓 + 2

• Before proving the theorem, we consider a 

“worst-case scenario”: In each round one of the processes fails

Theorem
If at most 𝑓 ≤ 𝑛 − 2 of 𝑛 nodes of a synchronous 
message passing system can crash, at least 𝑓 + 1
rounds are needed to solve consensus.
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Round

𝑎

1 2

Lower Bound on Rounds: Intuition

𝑝𝑘

𝑝𝑚

• Before process 𝑝𝑖 fails, it sends its 
value 𝑎 only to one process 𝑝𝑘

• Before process 𝑝𝑘 fails, it sends 
its value 𝑎 to only one process 𝑝𝑚𝑎

𝑝𝑖
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Round 1 2

……

𝑎

𝑓3

Lower Bound on Rounds: Intuition

𝑝𝑓

𝑝𝑛

• At the end of 
round 𝑓 only one 
process 𝑝𝑛 knows 
about value 𝑎
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Round 1 2

……

𝑎

f3

Lower Bound on Rounds: Intuition

𝑝𝑓

𝑝𝑛

decide

𝑎

𝑏

• Process 𝑝𝑛 may 
decide on 𝑎 and all 
other processes 
may decide on 
another value 𝑏

• 𝑓 rounds are not 
enough
⟹ at least 𝑓 + 1
rounds are needed
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Lower Bound on Rounds: Proof

Recall from earlier in the course:

• For the impossibility proof of the two generals problem, we used an 
indistinguishability proof

• Execution 𝐸 is indistinguishable from execution 𝐸′ for some node 𝑣 if 𝑣
sees the same things in both executions.
– same inputs and messages (schedule)

• If 𝐸 is indistinguishable from 𝐸′ for 𝑣, then 𝑣 does the same thing in 
both executions.
– We denoted this by 𝐸|𝑣 = 𝐸′|𝑣

Similarity:

• Call 𝐸𝑖 and 𝐸𝑗 similar if 𝐸𝑖|𝑣 = 𝐸𝑗|𝑣 for some node 𝑣

𝐸𝑖 ∼𝑣 𝐸𝑗 ⇔ 𝐸𝑖|𝑣 = 𝐸𝑗|𝑣
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Lower Bound on Rounds: Proof

Similarity Chain:

• Consider a sequence of executions 𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑇 such that

∀𝒊 ≥ 𝟏 ∶ 𝑬𝒊 ∼𝒗𝒊 𝑬𝒊+𝟏

– any two consecutive executions 𝐸𝑖 and 𝐸𝑖+1 are indistinguishable for some node 
𝑣𝑖 (we assume that 𝑣𝑖 does not crash in 𝐸𝑖 and 𝐸𝑖+1)

• Indistinguishability:
∀𝑖 ≥ 1 ∶ Node 𝑣𝑖 decides on the same value in 𝐸𝑖 and 𝐸𝑖+1

• Agreement:
∀𝑖 ≥ 1 ∶ All nodes decide on the same value in 𝐸𝑖 and 𝐸𝑖+1

• Hence, all executions 𝐸1, … , 𝐸𝑇 have the same decision value!

• Goal:
𝐸1: no crashes, all inputs are 0; 𝐸𝑇: no crashes, all inputs are 1
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Lower Bound on Rounds: Proof

𝟎

𝟎

𝟎

𝟎

𝟎

𝟎

round 1 round 2 round 3 round 4

Example: 𝒇 = 𝟒, 𝒏 = 𝟔 Need to show: 𝟒 rounds are not enough
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Lower Bound on Rounds: Proof
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Lower Bound on Rounds

Proof Sketch:

• Similarity chain starting with fault-free all-zeroes execution and ending 
with fault-free all-ones execution

• In all executions, at most one crash per round

• Construction works as long as there are at least 2 non-faulty nodes in 
each execution (𝑛 ≥ 𝑓 + 2)

• Validity: all-zeroes ⟹ decision 0;  all-ones ⟹ decision 1
Similarity Chain: same decision in all executions

Theorem

If at most 𝑓 ≤ 𝑛 − 2 of 𝑛 nodes of a synchronous 
message passing system can crash, at least 𝑓 + 1
rounds are needed to solve consensus.
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• The assumption that processes crash and stop forever is sometimes 
too optimistic

• Maybe the processes fail
and recover:

• Maybe the processes are
damaged:

Are you there?Probably
not…

??? Are you there?

Time

c

a!

b!

Arbitrary Behavior
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• Different processes may receive different values

• A Byzantine process can behave like a crash-failed process

𝑝1

𝑝2

𝑝3

𝑝4𝑝5

𝑎

𝑏

#

faulty
node

Consensus #5: Byzantine Failures
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After Failure, Node Remains in Network

𝑝1

𝑝3

𝑝4

𝑝5

Failure

𝑝2

𝑝1

𝑝3

𝑝4

𝑝5

𝑝2

𝑝1

𝑝3

𝑝4

𝑝5

𝑝2

𝑝1

𝑝3

𝑝4

𝑝5

𝑝2

𝑝1

𝑝3

𝑝4

𝑝5

𝑝2

Round 1 Round 2 Round 3 Round 4 Round 5
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Consensus with Byzantine Failures

• Again: If an algorithm solves consensus for 𝑓 failed processes, we say 
it is an 𝑓-resilient consensus algorithm

• Validity: If all non-faulty processes start with the same value, then all 
non-faulty processes decide on that value

– Note that in general this validity condition does not guarantee that the final value 
is an input value of a non-Byzantine process

– However, if the input is binary, then the validity condition ensures that processes 
decide on a value that at least one non-Byzantine process had initially

• Obviously, any 𝑓-resilient consensus algorithm requires at least 𝑓 + 1
rounds (follows from the crash failure lower bound)

• How large can 𝑓 be…? Can we reach consensus as long as
the majority of processes is correct (non-Byzantine)?
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Impossibility

Proof outline

• First, we discuss the 3 node case
– not possible for 𝑓 = 1

• The general case can then be proved by reduction
from the 3 node case
– Given an algorithm for 𝑛 node and 𝑓 faults for 𝑓 ≥ 𝑛/3,

we can construct a 1-resilient 3-node algorithm

Theorem
There is no 𝑓-resilient Byzantine consensus 
algorithm for 𝑛 nodes for 𝑓 ≥ 𝑛/3
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The 3 Node Case

Proof:

Lemma

There is no 1-resilient algorithm for 3 nodes

CA

B

Intuition:

• Node A may also receive 
information from C about B’s 
messages to C

• Node A may receive conflicting  
information about B from C and 
about C from B (the same for C!)

• It is impossible for A and C to 
decide which information to 
base their decision on!

Byzantine

??
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Proof Sketch

• Assume that both A and C have input
0. If they decided 1, they could violate
the validity condition  A and C must
decide 0 independent of what B says

• Similary, A and C must decide 1 if
their inputs are 1

• We see that the processes must base
their decision on the majority vote

• If A’s input is 0  and B tells A
that its input is 0  A decides 0

• If C’s input is 1 and B tells C
that its input is 1  C decides 1 C:1A:0

B

0
0 1

1

0! 1!

C:0A:0

B

0
0

1 1
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The General Case

• Assume for contradiction that there is an 𝑓-resilient algorithm A for 𝑛
nodes, where 𝑓 ≥ 𝑛/3

• We use this algorithm to solve consensus for 3 nodes where one node 
is Byzantine!

• For simplicity assume that 𝑛 is divisible by 3

• We let each of the three processes simulate n/3 processes
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• One of the 3 nodes is Byzantine ⟹ its 𝑛/3 simulated nodes may all 
behave like Byzantine nodes

• Since algorithm A tolerates 𝑛/3 Byzantine failures, it can still reach 
consensus 
⟹ We solved the consensus problem for three processes!

Consensus! Consensus!

The General Case
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• Can the nodes reach consensus if 𝑛 > 3𝑓?

• A simpler question: What if 𝑛 = 4 and 𝑓 = 1?

• The answer is yes. It takes two rounds:

1

2 3

Round 1: Exchange all values

1,.,2,3

0,1,2,.2,1,.,3

[matrix: one column for each original value, one row for each neighbor]

1

2 3

1,1,3,0
2,1,2,3
0,1,2,3

0,3,1,3
1,1,2,3
2,1,2,3

2,0,2,1
1,1,2,3
0,1,2,3

Cons. #6: Simple Byzantine Agreement Alg.

Round 2: Exchange received info
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• After round 2, each node has received 12 values, 3 for each of the 4 
input values (columns). If at least 2 of the 3 values of a column are 
equal, this value is accepted, otherwise it is discarded.
– Values of honest nodes are accepted

– The value of the Byzantine node is accepted iff it sends the same value to at least 
two nodes in the first round.

• Decide on most frequently accepted value, break ties consistently!

1

1 1

1,1,3,0
2,1,2,3 x,1,2,3
0,1,2,3

0,3,1,3
1,1,2,3 x,1,2,3
2,1,2,3

2,0,2,1
x,1,2,3 1,1,2,3

0,1,2,3

Consensus!

Simple Byzantine Agreement Algorithm
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• Does the algorithm still work in general for any 𝑓 and 𝑛 > 3𝑓?

• The answer is no. Try 𝑓 = 2 and 𝑛 = 7:

• The problem is that 𝑞 can say different things about what 𝑝 sent to 𝑞
– It can also obviously not work because of the 𝑓 + 1 round lower bound.

– What is the solution to this problem?

𝑝 10

0 𝑞 11

10

0
1

1

Round 1: Exchange all values Round 2: Exchange received info

𝑝 10

0 𝑞 11

𝑝 said 0

𝑝 said 0

𝑝 said 1

𝑝 said 1

𝑝 said 1

Majority 
says 0!

Majority 
says 1!

Simple Byzantine Agreement Algorithm
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• The solution is simple: Again exchange all information!

• This way, the nodes can learn that 𝑞 gave inconsistent information 
about 𝑝

• Hence, 𝑞 can be excluded, and also 𝑝 if it also gave inconsistent 
information (about 𝑞).

• If 𝑓 = 2 and 𝑛 > 6, consensus can be reached in 3 rounds!

• In fact, the following “algorithm” solves the problem 
for any 𝑓 and any 𝑛 > 3𝑓:

Simple Byzantine Agreement Algorithm

Exchange all information for 𝑓 + 1 rounds
Ignore all nodes that provided inconsistent information
Let all nodes decide based on the same input
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Simple Byzantine Agreement Algorithm

The proposed algorithm has several advantages:

+ It works for any 𝑓 and 𝑛 > 3𝑓, which is optimal

+ It only takes 𝑓 + 1 rounds. This is even optimal for crash failures!

+ It works for any input and not just binary input

However, it has some considerable disadvantages:

 “Ignoring all nodes that provided inconsistent information’’ 
is not easy to formalize

 The size of the messages increases exponentially! 
This is a severe problem. It is therefore worth studying whether
it is possible to solve the problem with small(er) messages
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Consensus #7: The Queen Algorithm

• The Queen algorithm is a simple Byzantine agreement algorithm that 
uses small messages

• The Queen algorithm solves consensus with 𝑛 nodes and 𝑓 failures 
where 𝑓 < 𝑛/4 in 𝑓 + 1 phases

Idea:

• There is a different (a priori known) queen in each phase

• Since there are 𝑓 + 1 phases, in one phase the queen is not Byzantine

• Make sure that in this round all nodes choose the same value and that 
in future rounds the nodes do not change their values anymore 

A phase consists 
of 2 rounds
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In each phase 𝒊 ∈ {𝟏,… , 𝒇 + 𝟏}:

Round 1:
Broadcast own value
Set own value to the value that was received most often
If own value appears > 𝑛/2 + 𝑓 times

support this value
else

do not support any value

Round 2:
The queen broadcasts its value
If not supporting any value

set own value to the queen’s value

The Queen Algorithm

At the end of phase 𝑓 + 1, 
decide on own value

Also send own 
value to oneself

If several values have the 
same (highest) 

frequency, choose any 
value, e.g., the smallest
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• Example: 𝑛 = 6, 𝑓 = 1

• Phase 1, round 1 (all broadcast):

2

1

0

0

1
0,0,0,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0
0

1

1

0

The Queen Algorithm: Example

No node 
supports a value

Majority value

All received values
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The Queen Algorithm: Example

• Example: 𝑛 = 6, 𝑓 = 1

• Phase 1, round 2 (queen broadcasts):

2

1

0

0

1

2
1

0

1

0

All nodes choose 
the queen’s value
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The Queen Algorithm: Example

• Example: 𝑛 = 6, 𝑓 = 1

• Phase 2, round 1 (all broadcast):

2

1

0

0

1
0,0,0,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0,0,0,1,1,2

0,0,1,1,1,2

0
0

1

1

0

No node 
supports a value
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The Queen Algorithm: Example

• Example: 𝑛 = 6, 𝑓 = 1

• Phase 2, round 2 (queen broadcasts):

0

0

0

0

0

0

0

0

0

All nodes choose 
the queen’s value

0

Consensus!
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The Queen Algorithm: Analysis

• After the phase where the queen is correct, all correct nodes have the 
same value
– If all nodes change their values to the queen’s value, obviously all values are the 

same

– If some node does not change its value to the queen’s value, it received a value >
𝑛/2 + 𝑓 times  All other correct nodes (including the queen) received this value 
> 𝑛/2 times and thus all correct nodes share this value

• In all future phases, no node changes its value
– In the first round of such a phase, nodes receive their own value from at least 𝑛 −

𝑓 > 𝑛/2 nodes and thus do not change it

– The nodes do not accept the queen’s proposal if it differs from their own value in 
the second round because the nodes received their own value at least 𝑛 − 𝑓 >
𝑛/2 + 𝑓 times. Thus, all correct nodes support the same value

That’s why we need 
f < n/4!
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The Queen Algorithm: Summary

The Queen algorithm has several advantages:

+ The messages are small: nodes only exchange their current values

+ It works for any input and not just binary input

However, it also has some disadvantages:

 The algorithm requires 𝑓 + 1 phases consisting of 2 rounds each ... 
this is twice as much as an optimal algorithm

 It only works with 𝑓 < 𝑛/4 Byzantine nodes!

• Is it possible to get an algorithm that works with 𝑓 < 𝑛/3
Byzantine nodes and uses small messages?
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Consensus #8: The King Algorithm

• The King algorithm is an algorithm that tolerates 𝑓 < 𝑛/3 Byzantine 
failures and uses small messages

• The King algorithm also takes 𝑓 + 1 phases

Idea:

• The basic idea is the same as in the Queen algorithm

• There is a different (a priori known) king in each phase

• Since there are 𝑓 + 1 phases, in one phase the king is not Byzantine

• The difference to the Queen algorithm is that the correct nodes only 
propose a value if many nodes have this value, and a value is only 
accepted if many nodes propose this value

A phase now 
consists of 3 rounds
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In each phase 𝒊 ∈ {𝟏…𝒇 + 𝟏}:

Round 1:
Broadcast own value

Round 2:
If some value 𝑥 appears ≥ 𝑛 − 𝑓 times

Broadcast “Propose 𝑥”
If some proposal received > 𝑓 times

Set own value to this proposal

Round 3:
The king broadcasts its value
If own value received < 𝑛 − 𝑓 proposals

Set own value to the king’s value

The King Algorithm

At the end of phase 𝑓 + 1, 
decide on own value

Also send own 
value to oneself
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The King Algorithm: Summary

The King algorithm has several advantages:

+ It works for any 𝑓 and 𝑛 > 3𝑓, which is optimal

+ The messages are small: processes only exchange their current values

+ It works for any input and not just binary input

However, it also has a disadvantage:

 The algorithm requires 𝑓 + 1 phases consisting of 3 rounds each
This is three times as much as an optimal algorithm
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Consensus #10: A Randomized Algorithm

• So far we mainly tried to reach consensus in synchronous systems. The 
reason is that no deterministic algorithm can guarantee consensus in 
asynchronous systems even if
only one process may crash

• Can one solve consensus in asynchronous systems if we allow our 
algorithms to use randomization?

• The answer is yes!

• The basic idea of the algorithm is to push the initial value. If other 
nodes do not follow, try to push one of the suggested values randomly

• For the sake of simplicity, we assume that the input is binary and at 
most 𝑓 < 𝑛/9 nodes are Byzantine

Asynchronous  system: Messages 
are delayed indefinitely

Synchronous system: Communication 
proceeds in synchronous rounds
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Randomized Algorithm

𝑥 ≔ own input; 𝑟 ≔ 0
Broadcast  proposal(𝑥, 𝑟)

In each round 𝒓 = 𝟏, 𝟐,…:

Wait for 𝑛 − 𝑓 proposals
If at least 𝑛 − 2𝑓 proposals have some value 𝑦

𝑥 ≔ 𝑦; decide on 𝑦
else if at least 𝑛 − 4𝑓 proposals have some value 𝑦

𝑥 ≔ 𝑦;
else

choose 𝑥 randomly with Pr[𝑥 = 0] = Pr[𝑥 = 1] = 1/2
Broadcast proposal(𝑥, 𝑟)
If decided on a value  stop



Theory of Distributed Systems Fabian Kuhn 88

Randomized Algorithm: Analysis

Validity condition (If all have the same input, all choose this value)

• If all correct nodes have the same initial value 𝑥, they will receive 𝑛 −
2𝑓 proposals containing 𝑥 in the first round and they will decide on 𝑥

Agreement (if the nodes decide, they agree on the same value)

• Assume that some correct node decides on 𝑥. This node must have 
received 𝑥 from 𝑛 − 3𝑓 correct nodes. Every other correct node must 
have received 𝑥 at least 𝑛 − 4𝑓 times, i.e., all correct nodes set their 
local value to 𝑥, and propose and decide on 𝑥 in the next round

The processes broadcast at the end of a phase 
to ensure that the processes that have already 

decided broadcast their value again!
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Randomized Algorithm: Analysis

Termination (all correct processes eventually decide)

• If some nodes do not set their local value randomly, they set their local 
value to the same value.
Proof: Assume that some nodes set their value to 0 and some others to 
1, i.e., there are ≥ 𝑛 − 5𝑓 correct nodes proposing 0 and ≥ 𝑛 − 5𝑓
correct processes proposing 1.
Then, in total there are ≥ 2(𝑛 − 5𝑓) + 𝑓 > 𝑛 nodes. Contradiction!

– Thus, in the worst case all 𝑛 − 𝑓 correct nodes need to choose the same bit 
randomly, which happens with probability 1/2𝑛−𝑓

– Hence, all correct processes eventually decide. The expected running time is 
smaller than 2𝑛

• The running time is awfully slow. Is there a clever way to speed up the 
algorithm?

• What about simply setting 𝑥 ≔ 1?! (Why doesn’t it work?)

That’s why we need f < n/9!
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Can we do this faster?! Yes, with a Shared Coin

• A better idea is to replace

with a subroutine in which all the processes compute
a so-called shared (a.k.a. common, “global”) coin

• A shared coin is a random binary variable that is 0
with constant probability and 1 with constant probability

• For the sake of simplicity, we assume that 
there are at most 𝑓 < 𝑛/3 crash failures
(no Byzantine failures!)

choose 𝑥 randomly with Pr[𝑥 = 0] = Pr[𝑥 = 1] = 1/2

All correct nodes know 
the outcome of the 

shared coin toss after 
each execution of the 

subroutine
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Randomized Algorithm: Summary

The randomized algorithm has several advantages:

+ It only takes a constant number of rounds in expectation

+ It can handle crash failures even if communication is asynchronous

However, it also has some disadvantages:

 It works only if there are 𝑓 < 𝑛/9 crash failures. It doesn’t work if 
there are Byzantine nodes

 It only works for binary input

Can it be improved?

+ There is a constant expected-time algorithm that tolerates
𝑓 < 𝑛/2 crash failures

• What about Byzantine failures?

There are similar 
algorithms for the 
shared memory model
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Byzantine and Asynchronous?

• Are there algorithms that can solve Byzantine agreement in an 
asynchronous environment (faster than simple individual coin flips)?

+ Yes, there are.

 Getting the best possible trade-offs between resilience, time complexity, message 
complexity, etc. is still an active area of research...
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Consensus: Decision Tree

Shared memory?

Wait-free? Synchronous?

RMW? Authenticated?#1 Randomized?

#2

f < n/3?

#3 Byzantine? #2#10#9

#4

#5#6,8

Y N

Y NY N

Y N Y N Y N

Y N

Y N

Message passing

Also #7 if f < n/4
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Some Credits

• The impossibility result (#2) is from Fischer, Lynch, Paterson, 1985

• The hierarchy (#3) is from Herlihy, 1991.

• The synchronous studies (#4) are from Dolev and Strong, 1983, and 
others.

• The Byzantine agreement problem (#5) and the simple algorithm (#6) 
are from Lamport, Shostak, Pease, 1980ff., and others

• The Queen algorithm (#7) and the King algorithm (#8) are from 
Berman, Garay, and Perry, 1989.

• The algorithm using authentication (#9) is due to Dolev and Strong, 
1982.

• The first randomized algorithm (#10) is from Ben-Or, 1983.

• The concept of a shared coin was introduced by Bracha, 1984.


