
Chapter 3

Broadcast and convergecast

Here we’ll describe protocols for propagating information throughout a
network from some central initiator and gathering information back to that
same initiator. We do this both because the algorithms are actually useful
and because they illustrate some of the issues that come up with keeping
time complexity down in an asynchronous message-passing system.

3.1 Flooding
Flooding is about the simplest of all distributed algorithms. It’s dumb and
expensive, but easy to implement, and gives you both a broadcast mechanism
and a way to build rooted spanning trees.

We’ll give a fairly simple presentation of flooding roughly following
Chapter 2 of [AW04].

3.1.1 Basic algorithm
The basic flooding algorithm is shown in Algorithm 3.1. The idea is that
when a process receives a message M , it forwards it to all of its neighbors
unless it has seen it before, which it tracks using a single bit seen-message.

Theorem 3.1.1. Every process receives M after at most D time and at
most |E| messages, where D is the diameter of the network and E is the set
of (directed) edges in the network.

Proof. Message complexity: Each process only sends M to its neighbors
once, so each edge carries at most one copy of M .

Time complexity: By induction on d(root, v), we’ll show that each v
receives M for the first time no later than time d(root, v) Æ D. The base

16

CHAPTER 3. BROADCAST AND CONVERGECAST 17

1 initially do
2 if pid = root then
3 seen-message Ω true
4 send M to all neighbors
5 else
6 seen-message Ω false

7 upon receiving M do
8 if seen-message = false then
9 seen-message Ω true

10 send M to all neighbors

Algorithm 3.1: Basic flooding algorithm

case is when v = root, d(root, v) = 0; here root receives message at time
0. For the induction step, Let d(root, v) = k > 0. Then v has a neighbor
u such that d(root, u) = k ≠ 1. By the induction hypothesis, u receives M
for the first time no later than time k ≠ 1. From the code, u then sends
M to all of its neighbors, including v; M arrives at v no later than time
(k ≠ 1) + 1 = k.

Note that the time complexity proof also demonstrates correctness: every
process receives M at least once.

As written, this is a one-shot algorithm: you can’t broadcast a second
message even if you wanted to. The obvious fix is for each process to
remember which messages it has seen and only forward the new ones (which
costs memory) and/or to add a time-to-live (TTL) field on each message
that drops by one each time it is forwarded (which may cost extra messages
and possibly prevents complete broadcast if the initial TTL is too small).
The latter method is what was used for searching in http://en.wikipedia.
org/wiki/Gnutella, an early peer-to-peer system. An interesting property
of Gnutella was that since the application of flooding was to search for huge
(multiple MiB) files using tiny (100 byte) query messages, the actual bit
complexity of the flooding algorithm was not especially large relative to the
bit complexity of sending any file that was found.

We can optimize the algorithm slightly by not sending M back to the
node it came from; this will slightly reduce the message complexity in many
cases but makes the proof a sentence or two longer. (It’s all a question of
what you want to optimize.)

http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/Gnutella

CHAPTER 3. BROADCAST AND CONVERGECAST 18

3.1.2 Adding parent pointers
To build a spanning tree, modify Algorithm 3.1 by having each process
remember who it first received M from. The revised code is given as
Algorithm 3.2

1 initially do
2 if pid = root then
3 parent Ω root

4 send M to all neighbors
5 else
6 parent Ω ‹

7 upon receiving M from p do
8 if parent = ‹ then
9 parent Ω p

10
11 send M to all neighbors

Algorithm 3.2: Flooding with parent pointers

We can easily prove that Algorithm 3.2 has the same termination proper-
ties as Algorithm 3.1 by observing that if we map parent to seen-message by
the rule ‹ æ false, anything else æ true, then we have the same algorithm.
We would like one additional property, which is that when the algorithm
quiesces (has no outstanding messages), the set of parent pointers form a
rooted spanning tree. For this we use induction on time:

Lemma 3.1.2. At any time during the execution of Algorithm 3.2, the
following invariant holds:

1. If u.parent ”= ‹, then u.parent.parent ”= ‹ and following parent pointers
gives a path from u to root.

2. If there is a message M in transit from u to v, then u.parent ”= ‹.

Proof. We have to show that any event preserves the invariant.

Delivery event M used to be in u.outbuf, now it’s in v.inbuf, but it’s still
in transit and u.parent is still not ‹.1

1This sort of extraneous special case is why I personally don’t like the split between
outbuf and inbuf used in [AW04], even though it makes defining the synchronous model
easier.

CHAPTER 3. BROADCAST AND CONVERGECAST 19

Computation event Let v receive M from u. There are two cases: if
v.parent is already non-null, the only state change is that M is no
longer in transit, so we don’t care about u.parent any more. If v.parent

is null, then

1. v.parent is set to u. This triggers the first case of the invariant.
From the induction hypothesis we have that u.parent ”= ‹ and that
there exists a path from u to the root. Then v.parent.parent =
u.parent ”= ‹ and the path from v æ u æ root gives the path
from v.

2. Message M is sent to all of v’s neighbors. Because M is now in
transit from v, we need v.parent ”= ‹; but we just set it to u, so
we are happy.

At the end of the algorithm, the invariant shows that every process has a
path to the root, i.e., that the graph represented by the parent pointers is
connected. Since this graph has exactly |V | ≠ 1 edges (if we don’t count the
self-loop at the root), it’s a tree.

Though we get a spanning tree at the end, we may not get a very good
spanning tree. For example, suppose our friend the adversary picks some
Hamiltonian path through the network and delivers messages along this
path very quickly while delaying all other messages for the full allowed 1
time unit. Then the resulting spanning tree will have depth |V | ≠ 1, which
might be much worse than D. If we want the shallowest possible spanning
tree, we need to do something more sophisticated: see the discussion of
distributed breadth-first search in Chapter 4. However, we may be
happy with the tree we get from simple flooding: if the message delay on
each link is consistent, then it’s not hard to prove that we in fact get a
shortest-path tree. As a special case, flooding always produces a BFS tree in
the synchronous model.

Note also that while the algorithm works in a directed graph, the parent
pointers may not be very useful if links aren’t two-way.

3.1.3 Termination
See [AW04, Chapter 2] for further modifications that allow the processes to
detect termination. In a sense, each process can terminate as soon as it is
done sending M to all of its neighbors, but this still requires some mechanism

CHAPTER 3. BROADCAST AND CONVERGECAST 20

for clearing out the inbuf; by adding acknowledgments as described in [AW04],
we can terminate with the assurance that no further messages will be received.

3.2 Convergecast
A convergecast is the inverse of broadcast: instead of a message propagating
down from a single root to all nodes, data is collected from outlying nodes
to the root. Typically some function is applied to the incoming data at
each node to summarize it, with the goal being that eventually the root
obtains this function of all the data in the entire system. (Examples would
be counting all the nodes or taking an average of input values at all the
nodes.)

A basic convergecast algorithm is given in Algorithm 3.3; it propagates
information up through a previously-computed spanning tree.

1 initially do
2 if I am a leaf then
3 send input to parent

4 upon receiving M from c do
5 append (c, M) to bu�er

6 if bu�er contains messages from all my children then
7 v Ω f(bu�er, input)
8 if pid = root then
9 return v

10 else
11 send v to parent

Algorithm 3.3: Convergecast

The details of what is being computed depend on the choice of f :

• If input = 1 for all nodes and f is sum, then we count the number of
nodes in the system.

• If input is arbitrary and f is sum, then we get a total of all the input
values.

• Combining the above lets us compute averages, by dividing the total
of all the inputs by the node count.

CHAPTER 3. BROADCAST AND CONVERGECAST 21

• If f just concatenates its arguments, the root ends up with a vector of
all the input values.

Running time is bounded by the depth of the tree: we can prove by
induction that any node at height h (height is length of the longest path from
this node to some leaf) sends a message by time h at the latest. Message
complexity is exactly n ≠ 1, where n is the number of nodes; this is easily
shown by observing that each node except the root sends exactly one message.

Proving that convergecast returns the correct value is similarly done by
induction on depth: if each child of some node computes a correct value, then
that node will compute f applied to these values and its own input. What
the result of this computation is will, of course, depend on f ; it generally
makes the most sense when f represents some associative operation (as in
the examples above).

3.3 Flooding and convergecast together
A natural way to build the spanning tree used by convergecast is to run
flooding first. This also provides a mechanism for letting the leaves know
that they are leaves and initiating the protocol. The combined algorithm is
shown as Algorithm 3.4.

However, this may lead to very bad time complexity for the convergecast
stage. Consider a wheel-shaped network consisting of one central node p0
connected to nodes p1, p2, . . . , pn≠1, where each pi is also connected to pi+1.
By carefully arranging for the pipi+1 links to run much faster than the p0pi

links, the adversary can make flooding build a tree that consists of a single
path p0p1p2 . . . pn≠1, even though the diameter of the network is only 2.
While it only takes 2 time units to build this tree (because every node is only
one hop away from the initiator), when we run convergecast we suddenly
find that the previously-speedy links are now running only at the guaranteed
Æ 1 time unit per hop rate, meaning that convergecast takes n ≠ 1 time.

This may be less of an issue in real networks, where the latency of links
may be more uniform over time, meaning that a deep tree of fast links is
still likely to be fast when we reach the convergecast step. But in the worst
case we will need to be more clever about building the tree. We show how
to do this in Chapter 4.

CHAPTER 3. BROADCAST AND CONVERGECAST 22

1 initially do
2 children Ω ÿ

3 nonChildren Ω ÿ

4 if pid = root then
5 parent Ω root

6 send init to all neighbors
7 else
8 parent Ω ‹

9 upon receiving init from p do
10 if parent = ‹ then
11 parent Ω p
12 send init to all neighbors
13 else
14 send nack to p

15 upon receiving nack from p do
16 nonChildren Ω nonChildren fi {p}

17 as soon as children fi nonChildren includes all my neighbors do
18 v Ω f(bu�er, input)
19 if pid = root then
20 return v
21 else
22 send ack(v) to parent

23 upon receiving ack(v) from k do
24 add (k, v) to bu�er

25 add k to children

Algorithm 3.4: Flooding and convergecast combined

