Algorithms and Datastructures Summer Term 2024
 Exercise Sheet 6

Due: Wednesday, June 5th, 2pm

Exercise 1: Minimum Distance between Values

(a) Given an array A that contains n integers. Describe an algorithm that finds indices $i \neq j$ such that $|A[i]-A[j]|$ is minimal among all indices. In other words, the algorithm should compute the entries of A that have the smallest distance. Argue the correctness of your algorithm and show that it runs in time $o\left(n^{2}\right)$.
(b) Now, assume that the n numbers from a) are given in a binary search tree B (instead of in an array). Again, give an algorithm that finds the two tree nodes $u \neq v$ such that $|\operatorname{val}(v)-\operatorname{val}(u)|$ is minimal. Show the correctness and explain why the runtime is on $O(n)$.

Exercise 2:

Again, given a binary tree B containing n integers. For a path $P=\left\{r, v_{1}, v_{2}, \ldots, b\right\}$, from the root node r to some leaf b, we define its weight by $w(P)=\sum_{v \in P} \operatorname{val}(v)$. Describe an algorithm that finds the heaviest path from the root node to some leaf in B, i.e., the path P that maximizes $w(P)$ for all root-to-leaf path. State that the runtime is in $O(n)$.

