Algorithms and Datastructures Summer Term 2024
 Exercise Sheet 8

Due: Wednesday, June 19th, 2pm

Exercise 1: BFS

Given the following undirected graph G :

a) Provide G as an adjacency matrix.
(2 Points)
b) Provide G as an adjacency list.
c) Perform a breadth-first search on G starting from node v_{1}. Write the order in which the nodes are marked (i.e., colored gray) in the algorithm. To obtain a deterministic result, always add the node with the smaller index to the FIFO-queue first, that is, v_{i} before v_{j} if $i<j$.

Exercise 2: DFS

We define 2 timestamps for each node (as in Slide 29):

- $t_{v, 1}$: Time when node v is colored gray by the DFS search
- $t_{v, 2}$: Time when node v is colored black by the DFS search

Additionally, consider the following directed graph $G=(V, E)$ given with

- $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$
- $E=\left\{\left(u_{1}, u_{2}\right),\left(u_{1}, u_{3}\right),\left(u_{2}, u_{3}\right),\left(u_{3}, u_{4}\right),\left(u_{4}, u_{1}\right),\left(u_{5}, u_{1}\right),\left(u_{5}, u_{3}\right),\left(u_{5}, u_{4}\right)\right\}$
a) Draw G.
b) Write the processing interval $\left[t_{v, 1}, t_{v, 2}\right]$ for each node in G. Similar to part 1 c), if multiple nodes could be visited next by the depth-first search, always choose the one with the smallest index (and thus we also start with u_{1}).
c) For each edge, indicate whether it is a Tree Edge, Backward Edge, Forward Edge, or Cross Edge.
(2 Points)

Exercise 3: Cycle search

a) How many edges m can an undirected connected graph with n nodes have at most? Justify your answer.
(2 Points)
b) Show that every undirected connected graph which contains no cycle ${ }^{1}$ has exactly $n-1$ edges (where n is the number of nodes of the graph).
(4 Points)
Hint: You can prove this statement, for example, by induction on $n \geq 1$.
c) Given an undirected connected graph $G=(V, E)$ with $n=|V|$. Provide an algorithm that decides in $\mathcal{O}(n)$ time whether G contains a cycle or not. Specify explicitly in which data structure G should be given.
(3 Points)

[^0]
[^0]: ${ }^{1}$ A cycle is a path $v_{1}, \ldots, v_{k} \in V$ in a graph where there is also an edge between the start and the end node, i.e., $\left\{v_{1}, v_{k}\right\} \in E$.

