Algorithms and Datastructures Winter Term 2022
 Exercise Sheet 10

Due: Wednesday, July 3nd, 2pm

Exercise 1: Dijkstra's Algorithm

In the lecture we saw that the runtime of Dijkstra using Fibonacci heaps is $O(m+n \log n)$. Is this the actual runtime of the algorithm? Maybe our analysis is just not good enough! We will show that the analysis is indeed tight.
(a) Argue that any algorithm solving SSSP (Single Source Shortest Paths) must spend at least $\Omega(m)$ time. An intuitive explanation is sufficient.
(1 Point)
(b) Proof that the Dijkstra algorithm determines shortest paths in a sorted order. For a source node v and any other two nodes $u \neq w$ the distance $d(v, u)$ will be marked before $d(v, w)$ if $d(v, u)<d(v, w)$. Give a formal proof.
(4 Points)
(c) Proof that Dijkstras Algorithm needs $\Omega(n \log n)$ time if the algorithm is implemented using a comparison based heap. The idea is the following: reduce the problem of sorting n numbers to the SSSP problem. (Given n numbers in an array A create an instance of SSSP.) Give a precise description and a formal proof.
(5 Points)

Exercise 2: Currency Exchange

Consider n currencies w_{1}, \ldots, w_{n}. The exchange rates are given in an $n \times n$-matrix A with entries $a_{i j}$ $(i, j \in\{1, \ldots, n\})$. Entry $a_{i j}$ is the exchange rate from w_{i} to w_{j}, i.e., for one unit of w_{i} one gets $a_{i j}$ units of w_{j}.
Given a currency $w_{i_{0}}$, we want to find out whether there is a sequence $i_{0}, i_{1}, \ldots, i_{k}$ such that we make profit if we exchange one unit of $w_{i_{0}}$ to $w_{i_{1}}$, then to $w_{i_{2}}$ etc. until $w_{i_{k}}$ and then back to $w_{i_{0}}$.
(a) Translate this problem to a graph problem. That is, define a graph and a property which the graph fulfills if and only if there is a sequence of currencies as described above.
(4 Points)
(b) Give an algorithm that decides in $\mathcal{O}\left(n^{3}\right)$ time steps whether there is a sequence of currencies as described above. Explain the correctness and runtime.
(6 Points)
Hint: It is $a \cdot b>1 \Longleftrightarrow-\log a-\log b<0$

