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Exercise 1: Hashing with Open Addressing (5 Points)

Let H be a hash table of size m = 13 and let h1, h2, h3 : N0 7→ {0, ...,m− 1} be hash functions defined
as follows1:

• h1(k) := k mod m

• h2(k) := 3 · k mod m

• h3(k) := k + 1 mod m

Add the keys 23, 12, 75, 945, 30, 99, 345 (in that order) into the initaly empty hash table H. Solve
conflicts as follows:

a) Linear Probing using hash function h1. (2 Points)

b) Use Double Hashing using hash functions h2 and h3. (3 Points)

Write down every intermediate step!

Sample Solution

a)

h(x, i) := h1(x) + i mod m

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - - - 23 - - - - - - -

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - 12 - 23 - - - - - - -

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - 12 - 23 - - - - - - 75

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - 12 - 23 945 - - - - - 75

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - 12 30 23 945 - - - - - 75

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - 12 30 23 945 99 - - - - 75

0 1 2 3 4 5 6 7 8 9 10 11 12

345 - - 12 30 23 945 99 - - - - 75
1We define the digit sum of k by k.



b)

h(x, i) := h2(x) + i · h3(x) mod m

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - - 23 - - - - - - - -

0 1 2 3 4 5 6 7 8 9 10 11 12

- - - - 23 - - - - - 12 - -

0 1 2 3 4 5 6 7 8 9 10 11 12

- - 75 - 23 - - - - - 12 - -

0 1 2 3 4 5 6 7 8 9 10 11 12

- 945 75 - 23 - - - - - 12 - -

0 1 2 3 4 5 6 7 8 9 10 11 12

- 945 75 - 23 - - - - - 12 - 30

0 1 2 3 4 5 6 7 8 9 10 11 12

- 945 75 - 23 - - - - - 12 99 30

0 1 2 3 4 5 6 7 8 9 10 11 12

- 945 75 - 23 - - - 345 - 12 99 30

Exercise 2: Hashing with Chaining (5 Points)

Given a Hash Table of size m and an arbitrary hash function h : S 7→ {0, ...,m − 1}. Let S be a set
of at least y ·m elements, so |S| ≥ y ·m.

a) Show that S has a subset Y of at least y elements (hence |Y | ≥ y) such that h(x1) = h(x2) for all
x1, x2 ∈ Y . (4 Points)

b) What does the result of a) tells us about the Worst-Case runtime of ”find” in a hash table with
Chaining (if the table is filled with all the elements of S before we call ”find”)? (1 Point)

Sample Solution

a) We proof the statement by contradiction. We hence assume that there is no set Y of size |Y | ≥ y
with the property that for all x1, x2 ∈ Y , the given hashfunction h maps h(x1) = h(x2). Further,
we define the sets S0, S1, ..., Sm−1 as follows:

Si := {x ∈ S | h(x) = i}

Since the hash function h maps every element to exactly one value between 0 and m− 1, we also
have that every element x ∈ S is contained in exactly one of the Si sets. Thus,

|S0|+ |S1|+ . . .+ |Sm−1| = |S|. (1)

However, by our assumption we have that for all these sets |Si| < y. What implies that

|S0|+ |S1|+ . . .+ |Sm−1| < y + y + . . .+ y = m · y. (2)

Connecting (1) and (2) we get |S| < m · y. Contradiction.

b) To search an element in that data structure, we need - independent of the hash function - time
Ω(y).



Exercise 3: Application of Hashtables (10 Points)

Consider the following algorithm:

Algorithm 1 algorithm . Input: Array A of length n with integer entries

1: for i = 1 to n− 1 do
2: for j = 0 to i− 1 do
3: for k = 0 to n− 1 do
4: if |A[i]−A[j]| = A[k] then
5: return true
6: return false

(a) Describe what algorithm computes and analyse its asymptotical runtime. (3 Points)
Hint: The difference |A[i]−A[j]| may become arbitrarily large.

(b) Describe a different algorithm B for this problem (i.e., B(A) = algorithm(A) for each input A)
which uses hashing and takes time O(n2) (with proof). (3 Points)

Hint: You may assume that inserting and finding keys in a hash table needs O(1) if α = O(1) (α
is the load of the table).

(c) Describe another algorithm for this problem without using hashing which takes time O(n2 log n)
(with proof). (4 Points)

Sample Solution

(a) The algorithm checks if there are two entries in the array whose distance (absolute value of the
difference) equals some entry in the array. If so, it returns “true”, otherwise “false”. In case it
returns “false”, the algorithm runs completely through all three loops. It considers

n−1∑
i=1

i =
n(n− 1)

2
= O(n2)

many pairs (i, j) and for each of this pair it checks n times the if-condition in line 4. Therefore,
the runtime is O(n3).

(b) We compute an array B of size O(n2) which contains an entry |A[i] − A[j]| for each pair (i, j)
with 0 ≤ j < i < n. This takes time O(n2). Afterwards we allocate a hash table of size O(n2)
(therefore α = O(1)), choose a suitable hash function h and hash the values from B into the table
H (this takes O(n2) under ther assumption that one insert operation takes O(1)). Finally, we
test for each entry in A if it is contained in H, taking n times O(1). Hence the overall runtime is
O(n2).

(c) We sort A, taking O(n log n). Afterwards we compute array B as in part (b), taking O(n2). Now
we test for each entry in B if it is in A using binary search. This takes n2 times O(log n). The
overall runtime is dominated by the last step and equals O(n2 log n).


