Algorithms and Datastructures Winter Term 2024
 Sample Solution Exercise Sheet 5

Due: Wednesday, May 29rd, 2pm

Exercise 1: Bad Hash Functions

Let m be the size of a hash table and $M \gg m$ the largest possible key of the elements we want to store in the table. The following "hash functions" are poorly chosen. Explain for each function why it is not a suitable hash function.
(a) $h: x \mapsto\left\lfloor\frac{x}{m}\right\rfloor \bmod m$
(1,5 Points)
(b) $h: x \mapsto(2 x+1) \bmod m$ (m even).
(1,5 Points)
(c) $h: x \mapsto(x \bmod m)+\left\lfloor\frac{m}{x+1}\right\rfloor$
(1,5 Points)
(d) For each calculation of the hash value of x one chooses for $h(x)$ a uniform random number from $\{0, \ldots, m-1\}$
(1,5 Points)
(e) $h: x \mapsto\left\lfloor\frac{M}{x \cdot p \bmod M}\right\rfloor \bmod m$, where p is prime and $\frac{M}{2}<p<M$
(2 Points)
(f) For a set of "good" hash functions h_{1}, \ldots, h_{ℓ} with $\ell \in \Theta(\log m)$, we first compute $h_{1}(x)$, then $h_{2}\left(h_{1}(x)\right)$ etc. until $h_{\ell}\left(h_{\ell-1}\left(\ldots h_{1}(x)\right) \ldots\right)$. That is, the function is $h: x \mapsto h_{\ell}\left(h_{\ell-1}\left(\ldots h_{1}(x)\right) \ldots\right)$ (2 Points)

Sample Solution

(a) Values are not scattered. m subsequent values have the same hash value.
(b) Only half of the hash table is used. The cells $0,2,4, \ldots, m-2$ stay empty.
(c) $h(m-1)=m$, but the table has only the positions $0, \ldots, m-1$.
(d) The hash value of x can not be reproduced.
(e) First, consider the function $h^{\prime}: x \mapsto\left\lfloor\frac{M}{x}\right\rfloor \bmod m$. h^{\prime} maps all $x>M / 2$ (i.e., half of the keys) to position 1 , all x with $M / 3<x \leq M / 2$ (i.e. $1 / 6$ of the keys) to position 2 etc. So the table is filled asymmetrically. As the function $x \mapsto x \cdot p \bmod M$ is a bijection from $\{0, \ldots, M-1\}$ to $\{0, \ldots, M-1\}, h$ has the same property of an asymmetrical filled table (but compared to h^{\prime} we do not have that a long sequence of subsequent keys are mapped to the same position which would be another undesirable property, cf. part (a)). Another problem is that for values x with $x \cdot p \equiv 0$ $\bmod M$, the hash value is not defined.
(f) The calculation of a single hash value needs $\Omega(\log m)$.

Exercise 2: (No) Families of Universal Hash Functions

(a) Let $\mathcal{S}=\{0, \ldots, M-1\}$ and $\mathcal{H}_{1}:=\left\{h: x \mapsto a \cdot x^{2} \bmod m \mid a \in \mathcal{S}\right\}$. Show that H_{1} is not c-univeral for constant $c \geq 1$ (that is c is fixed and must not depend on m).
(4 Points)
(b) Let m be a prime and let $k=\left\lfloor\log _{m} M\right\rfloor$. We consider the keys $x \in \mathcal{S}$ in base m presentation, i.e., $x=\sum_{i=0}^{k} x_{i} m^{i}$. Consider the set of functions from the lecture (week 5 , slide 15)

$$
\mathcal{H}_{2}:=\left\{h: x \mapsto \sum_{i=0}^{\mathbf{k}} a_{i} x_{i} \bmod m \mid a_{i} \in\{0, \ldots, m-1\}\right\} .
$$

Show that \mathcal{H}_{2} is 1-universal.
(6 Points)
Hint: Two keys $x \neq y$ have to differ at some digit $x_{j} \neq y_{j}$ in their base m presentation.
Remark: Since m is prime, for each element $a \in\{1, \ldots, m-1\}$ there exists an inverse element $b \in\{1, \ldots, m-1\}$ of a modulo m i.e., $a \cdot b \equiv 1 \bmod m$.

Sample Solution

(a) For an $x \in \mathcal{S}$ let $y=x+i \cdot m \in \mathcal{S}$ for some $i \in \mathbb{Z} \backslash\{0\}$. Such a y exists for any x if $M>2 m$. Let $h \in \mathcal{H}_{1}$. We obtain

$$
\begin{aligned}
h(y) & =a \cdot y^{2} \quad \bmod m \\
& \equiv a \cdot(x+i m)^{2} \quad \bmod m \\
& \equiv a \cdot\left(x^{2}+2 x i m+(i m)^{2}\right) \quad \bmod m
\end{aligned}
$$

$$
\equiv a x^{2} \quad \bmod m=h(x) . \quad \text { (the vanishing terms are multiples of } m \text {) }
$$

It follows that $\left|\left\{h \in \mathcal{H}_{1} \mid h(x)=h(y)\right\}\right|=\left|\mathcal{H}_{1}\right|$, so for $m>c$ we have

$$
\left|\left\{h \in \mathcal{H}_{1} \mid h(x)=h(y)\right\}\right|>\frac{c}{m}\left|\mathcal{H}_{1}\right| .
$$

This means that for $m>c, \mathcal{H}_{1}$ is not c-universal.
(b) Let $x, y \in \mathcal{S}$ with $x \neq y$. Let $x_{j} \neq y_{j}$ be the position where x and y differ in their base m representation. Let $h \in \mathcal{H}_{2}$ such that $h(x)=h(y)$. We have

$$
\begin{aligned}
& h(x)=h(y) \\
\Longleftrightarrow & \sum_{i=0}^{k} a_{i} x_{i} \equiv \sum_{i=0}^{k} a_{i} y_{i} \bmod m \\
\Longleftrightarrow & a_{j}(\underbrace{x_{j}-y_{j}}_{\neq 0}) \equiv \sum_{i \neq j} a_{i}\left(y_{i}-x_{i}\right) \quad \bmod m \\
\Longleftrightarrow & a_{j} \equiv\left(x_{j}-y_{j}\right)^{-1} \sum_{i \neq j} a_{i}\left(y_{i}-x_{i}\right) \quad \bmod m \quad\left(x_{j}-y_{j}\right)^{-1} \text { exists because } m \text { is prime }
\end{aligned}
$$

This means that for any values $a_{0}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{k}$ there is a unique a_{j} such that the function h defined by a_{0}, \ldots, a_{k} is in $\left\{h \in \mathcal{H}_{2} \mid h(x)=h(y)\right\}$. So we have m^{k} possibilities to choose a function from $\left\{h \in \mathcal{H}_{2} \mid h(x)=h(y)\right\}$. It follows

$$
\frac{\left|\left\{h \in \mathcal{H}_{2} \mid h(x)=h(y)\right\}\right|}{\left|\mathcal{H}_{2}\right|}=\frac{m^{k}}{m^{k+1}}=\frac{1}{m} .
$$

