# Algorithms and Datastructures Summer Term 2024 <br> Sample Solution Exercise Sheet 6 <br> Due: Wednesday, June 5th, 2pm 

## Exercise 1: Minimum Distance between Values

## (10 Points)

(a) Given an array $A$ that contains $n$ integers. Describe an algorithm that finds indices $i \neq j$ such that $|A[i]-A[j]|$ is minimal among all indices. In other words, the algorithm should compute the entries of $A$ that have the smallest distance. Argue the correctness of your algorithm and show that it runs in time $o\left(n^{2}\right)$.
(5 Points)
(b) Now, assume that the $n$ numbers from a) are given in a binary search tree $B$ (instead of in an array). Again, give an algorithm that finds the two tree nodes $u \neq v$ such that $|\operatorname{val}(v)-\operatorname{val}(u)|$ is minimal. Show the correctness and explain why the runtime is on $O(n)$.
(5 Points)

## Sample Solution

(a) Algorithm: We first sort the array in time $O(n \log n)$ (e.g. MergeSort). Then we iterate over the sorted array and always store the $k$ for that $|A[k+1]-A[k]|$ is minimal. Note that by the tasks' definition we have to return the original indices $i$ and $j$. To archieve that, we modify the initial array before we sort it, i.e., we replace every element $A[k]$ by the tuple ( $A[k], k)$. Sorting by the first tuple entry let the algorithm work as before, but we have the original indices stored as well.

Correctness: In every sorted array $A$ we have for all $k$ that $\ldots \leq A[k-2] \leq A[k-1] \leq A[k] \leq$ $A[k+1] \leq A[k+2] \leq \ldots$. Thus, the largest element that is smaller than $A[k]$ is $A[k-1]$ (as otherwise the array wouldn't be sorted correctly) and with the same reasoning the smallest element larger than $A[k]$ is $A[k+1]$. We therefore do not need to compare $A[k]$ with all entries in the array, just with its two neighbors. Since our algorithm compares every neighbor in the sorted array we are guaranteed to find the minimum distance.
Runtime: Sorting takes $O(n \log n)$ time. The iteration and comparisions that follow afterwards can be done in linear time. Thus, the overall runtime is in $O(n \log n) \subset o\left(n^{2}\right)$.
(b) Here we use the In-Order traversal in binary tress. This one always returns the elements of the tree in sorted order. Thus, we can act like in above's task.
Correctness: Follows from the fact that In-Order produces a sorted output and the remaining argument is as in a).
Runtime: The traversal takes $\Theta(n)$ time. Since the comparisons (like in a)) also take linear time the statement of the task is shown.

## Exercise 2:

Again, given a binary tree $B$ containing $n$ integers. For a path $P=\left\{r, v_{1}, v_{2}, \ldots, b\right\}$, from the root node $r$ to some leaf $b$, we define its weight by $w(P)=\sum_{v \in P} \operatorname{val}(v)$. Describe an algorithm that finds
the heaviest path from the root node to some leaf in $B$, i.e., the path $P$ that maximizes $w(P)$ for all root-to-leaf path. State that the runtime is in $O(n)$.

## Sample Solution

We use the Post-Order traversal. Whenever a node $v$ is visited, both his chilred already got visited. Whenever we visit a node $v$, we compute the heaviest path rooted at $v$. The weight of $v$ is as follows:

$$
\operatorname{val}(v)+\max _{u \text { child of } v}\left\{w\left(P_{u}\right)\right\}
$$

Correctness: We will proof that every node $v$ knows the heaviest path rooted at $v$ ending at some leaf. For that, we use induction over the height of the tree rooted at $v$. When the height is 0 , i.e., the tree has just one node, the heaviest path has weight $\operatorname{val}(v)$. Now, assume $v$ has at least one child. Since we traverse in Poat-order, all children are already visited. By induction hypothesis, we know the heaviest path rooted at the childrens of $v$ (since the trees rooted at the children are of lower height). Thus, we can compute the heaviest path of $v$ by taking the heavier child and add $\operatorname{val}(v)$, what indeed is done by our algorithm.
When the algorithm visits root $r$, we also know the heaviest path in the whole binary tree.
Runtime: The traverls takes linear in $n$ time. While checking the heaver path of the children simply takes a constant number of checks (since there are at most 2 children). Thus, we overall have a runtime of $O(n)$.

