Algorithms and Datastructures
 Summer Term 2024
 Sample Solution Exercise Sheet 8
 Due: Wednesday, June 19th, 2pm

Exercise 1: BFS

Given the following undirected graph G :

a) Provide G as an adjacency matrix.
b) Provide G as an adjacency list.
c) Perform a breadth-first search on G starting from node v_{1}. Write the order in which the nodes are marked (i.e., colored gray) in the algorithm. To obtain a deterministic result, always add the node with the smaller index to the FIFO-queue first, that is, v_{i} before v_{j} if $i<j$.

Sample Solution

a)
b) $\quad v_{1}: v_{2}, v_{4}, v_{7}$

- $v_{2}: v_{1}, v_{3}, v_{5}$
- $v_{3}: v_{2}, v_{4}, v_{7}, v_{10}$
- $v_{4}: v_{1}, v_{3}, v_{5}, v_{6}$
- $v_{5}: v_{2}, v_{4}, v_{6}$
- $v_{6}: v_{4}, v_{5}$
- $v_{7}: v_{1}, v_{3}, v_{8}$
- $v_{8}: v_{7}, v_{9}$
- $v_{9}: v_{8}, v_{10}$
- $v_{10}: v_{3}, v_{9}, v_{11}$
- $v_{11}: v_{10}$
c)

Exercise 2: DFS

We define 2 timestamps for each node (as in Slide 29):

- $t_{v, 1}$: Time when node v is colored gray by the DFS search
- $t_{v, 2}$: Time when node v is colored black by the DFS search

Additionally, consider the following directed graph $G=(V, E)$ given with

- $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$
- $E=\left\{\left(u_{1}, u_{2}\right),\left(u_{1}, u_{3}\right),\left(u_{2}, u_{3}\right),\left(u_{3}, u_{4}\right),\left(u_{4}, u_{1}\right),\left(u_{5}, u_{1}\right),\left(u_{5}, u_{3}\right),\left(u_{5}, u_{4}\right)\right\}$
a) Draw G.
(2 Points)
b) Write the processing interval $\left[t_{v, 1}, t_{v, 2}\right]$ for each node in G. Similar to part 1 c), if multiple nodes could be visited next by the depth-first search, always choose the one with the smallest index (and thus we also start with u_{1}).
(2 Points)
c) For each edge, indicate whether it is a Tree Edge, Backward Edge, Forward Edge, or Cross Edge.
(2 Points)

Sample Solution

ac) We label a Tree Edge by T, a Backward Edge by B (Backward Edge), a Forward Edge by F and a Cross Edge by C :.

b) $-u_{1}:[1,8]$

- $u_{2}:[2,7]$
- $u_{3}:[3,6]$
- $u_{4}:[4,5]$
- $u_{5}:[9,10]$

Exercise 3: Cycle search

a) How many edges m can an undirected connected graph with n nodes have at most? Justify your answer.
(2 Points)
b) Show that every undirected connected graph which contains no cycle ${ }^{1}$ has exactly $n-1$ edges (where n is the number of nodes of the graph).
(4 Points)
Hint: You can prove this statement, for example, by induction on $n \geq 1$.
c) Given an undirected connected graph $G=(V, E)$ with $n=|V|$. Provide an algorithm that decides in $\mathcal{O}(n)$ time whether G contains a cycle or not. Specify explicitly in which data structure G should be given.
(3 Points)

[^0]
Sample Solution

a) A graph has the maximum number of edges when every node is connected to every other node. This means each node has a degree of $n-1$. We now fix an order of the nodes v_{1}, \ldots, v_{n} and count the "not yet counted" edges for each. Thus, v_{1} has exactly $n-1$ edges, v_{2} still has $n-2$ edges (since the edge between v_{1} and v_{2} has already been counted), v_{3} has $n-3$ edges, and so on. Therefore, we have:

$$
m \leq \sum_{i=1}^{n}(n-i)=\sum_{i=1}^{n-1} i=\frac{(n-1) \cdot n}{2}
$$

Another approach would be to calculate how many 2-element subsets there are of an n-element set. There are exactly $\binom{n}{2}=\frac{n!}{2!\cdot(n-2)!}=\frac{n \cdot(n-1)}{2!}=\frac{(n-1) \cdot n}{2}$.
b) A connected graph without cycles has exactly $n-1$ edges. Proof by induction.

Base case: For $n=1$ the graph has no edges.
Induction hypothesis: Every such graph with $k \leq n-1$ nodes has $k-1$ edges.
Inductive step: We now show that the hypothesis also holds for a graph G with n nodes. Every graph G with n nodes can be composed of a node v which is connected to $l \geq 1$ disjoint subgraphs G_{1}, \ldots, G_{l} of G. Since G is acyclic, each of these subgraphs is also acyclic, and the only connection between two subgraphs is through the node v. Without loss of generality, let us say that G_{i} has exactly n_{i} nodes (for each of these subgraphs). Since $n_{i} \leq n-1$ for all i, it follows from the induction hypothesis that G_{i} has exactly $n_{i}-1$ edges. We can now calculate the number of edges m in G as follows:

$$
m=\operatorname{deg}(v)+\sum_{i=1}^{l}\left(n_{i}-1\right)=l+\sum_{i=1}^{l} n_{i}-\sum_{i=1}^{l} 1=\sum_{i=1}^{l} n_{i}=n-1
$$

Here, $\operatorname{deg}(v)=l$, since v is connected to each of the l subgraphs, and $\sum_{i=1}^{l} n_{i}=n-1$ because this is the sum over all nodes in G excluding v.
c) This task could theoretically be solved using either depth-first or breadth-first search. Here, we use breadth-first search and assume that G is given as an adjacency list. We perform the breadth-first search "normally", but we also record for each node v the node u from which it was first reached. This node u is called the parent of v. If v has a marked neighbor that is not its parent, then there is a cycle in the tree, and we return false. This procedure has the same runtime as breadth-first search, i.e., $O(n+m)$. If $m=O\left(n^{2}\right)$ is, as in task a), then the runtime is obviously too slow. However, we know from b) that if G is acyclic, it only has $n-1$ edges. We can therefore terminate the procedure after $n-1$ steps and return false if there are still unvisited nodes in the FIFO queue. Thus, the runtime is $O(n)$.
To justify why a cycle is found when node v has an already marked node, say w, as a neighbor: This would imply that there is a node s from which there is a path to both w and v. The edge between w and v connects these paths into a cycle.

[^0]: ${ }^{1}$ A cycle is a path $v_{1}, \ldots, v_{k} \in V$ in a graph where there is also an edge between the start and the end node, i.e., $\left\{v_{1}, v_{k}\right\} \in E$.

