FREIBURG

Algorithmen und Datenstrukturen

Vorlesung 10

Graphenalgorithmen III: Kürzeste Wege

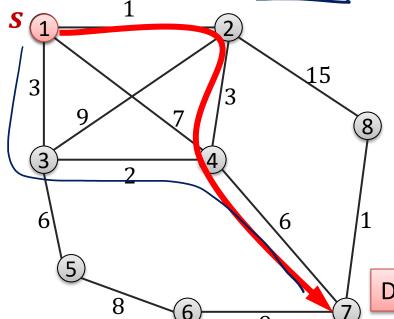
Donnersdag, 8.8., 14:00-17:00

Fabian Kuhn

Algorithmen und Komplexität

Single Sourse Shortest Paths Problem

- Gegeben: gewichteter Graph G = (V, E, w), Startknoten $s \in V$
 - Wir bezeichnen Gewicht einer Kante (u, v) als w(u, v)
 - Annahme vorerst: $\forall e \in E$: w(e) ≥ 0
- Ziel: Finde kürzeste Pfade / Distanzen von s zu allen Knoten
 - Distanz von s zu v: $d_G(s, v)$ (Länge eines kürzesten Pfades)



Distanz von Knoten 1 zu 7:10

(SSS?)

Optimalität von Teilpfaden

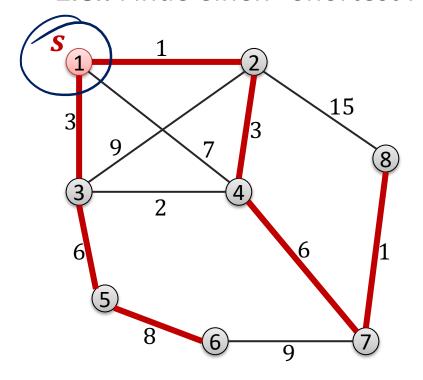
Lemma: Falls $\underline{v_0, v_1, \dots, v_k}$ ein kürzester Pfad von v_0 nach v_k ist, dann gilt für alle $0 \le \underline{i} \le \underline{j} \le k$, dass der Teilpfad $\underline{v_i, v_{i+1}, \dots, v_j}$ ein kürzester Pfad von v_i nach v_j ist.

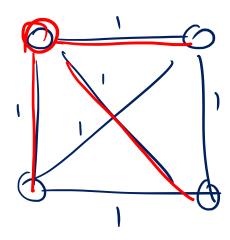
Kürzester Pfad von v_0 nach v_k : v_1 v_2 v_3 v_4 v_4 v_5 v_6 v_6 v_8 v_8

- Teilpfad von v_i nach v_i ist auch kürzester Pfad.
 - Sonst könnte man den Teilpfad von v_i nach v_j durch den kürzesten Pfad von v_i nach v_j ersetzen.
 - Falls dadurch Knoten mehrfach besucht werden, kann man einen Zyklus heraussschneiden und erhält einen noch kürzeren Pfad.
- Lemma gilt auch bei negativen Kantengewichten,
 - solange es im Graph keine negativen Zyklen hat

Shortest-Path Tree

- Im Knoten <u>s</u> gewurzelter Spannbaum, welcher kürzeste Pfade von s zu allen Knoten enthält.
 - Einen solchen Baum gibt es immer (folgt aus der Optimalität von Teilpfaden)
- Bei ungewichteten Graphen: BFS-Spannbaum
- **Ziel:** Finde einen "Shortest Path Tree"





Dijkstras Algorithmus: Idee

• Algorithmus von Edsger W. Dijkstra (1959 publiziert) 🍑

Idee:

Wir starten bei s und bauen schrittweise den Spannbaum auf

Invariante:

Algorithmus hat zu jeder Zeit einen bei s gewurzelten Teilbaum eines "Shortest Path Tree".

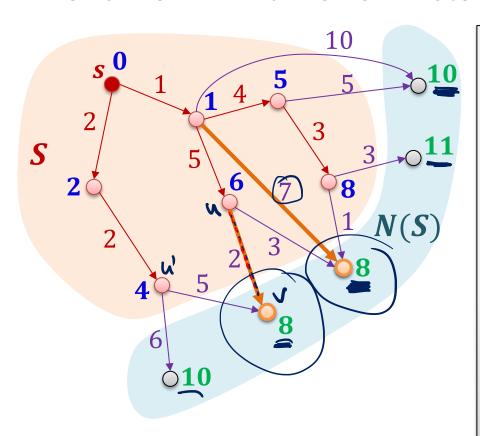
- Ziel: In jedem Schritt des Algorithmus einen Knoten hinzufügen
 - Am Anfang: Teilbaum besteht nur aus s (erfüllt Invariante trivialerweise...)
 - 1. Schritt: Wegen der Optimalität der Teilpfade, muss es einen kürzesten
 Pfad bestehend aus nur einer Kante geben...
 - Füge Knoten mit kleinstem Abstand von s zum Baum hinzu

Dijkstras Algorithmus: Ein Schritt

FREIBUR

Gegeben: Einen in s gewurzelten T, so dass T Teilbaum eines "Shortest Path Tree" von s in s ist. (Knoten von s : s)

Wie können wir T um einen Knoten erweitern?



 \underline{S} : Knoten in Baum T

N(S): Knoten, die direkt zum Baum hinzugefügt werden können.

Um $v \in N(S)$ hinzuzufügen, muss gelten, dass

$$\underline{\underline{\underline{d_G(s,v)}}} = \min_{\underline{u \in S}} \{\underline{\underline{d_G(s,u)}} + \underline{\underline{w(u,v)}}\}$$

Wir werden sehen, dass das für $v \in N(S)$ mit minimaler Distanz $d_G(s, v)$ von s gilt.

Dijkstras Algorithmus: Ein Schritt

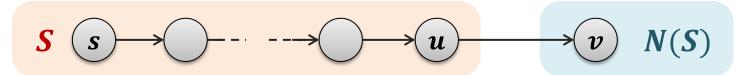
REBU

Gegeben: $T = (S, E_T)$ ist Teilbaum eines "Shortest Path Tree" von \overline{S} .

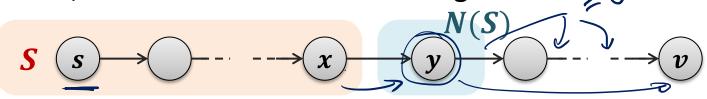
Lemma: Für einen Knoten $v \in N(S)$ und eine Kante (u, v) mit $u \in S$, so dass $\underline{d_G(s, u) + w(u, v)}$ minimiert wird, gilt:

$$d_G(s,v) = d_G(s,u) + \underline{w(u,v)}$$

Betrachte den *s-v* Pfad, den wir so erhalten:



Nehme an, dass es einen kürzeren Pfad gibt:



Weil es keine negative Kantengewichte gibt, gilt damit

$$d_G(s, x) + w(x, y) \le d_G(s, v) < d_G(s, u) + w(u, v)$$

Invariante:

Algorithmus hat zu jeder Zeit einen bei s gewurzelten Teilbaum eines "Shortest Path Tree" T = (S, A).

- Am Anfang ist $T = (\{s\}, \emptyset)$
- Für jeden Knoten $\underline{v} \notin S$ berechnet man zu jedem Zeitpunkt

$$\underline{\delta(s,v)} \coloneqq \min_{u \in S \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

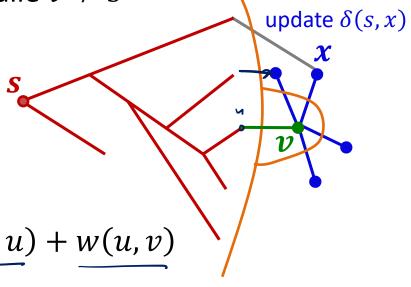
- sowie den Eingangsnachbar $\underline{u =: \alpha(v)}$, welcher den Ausdruck minimiert...
- $\delta(s,v)$ entspricht immer einem s-v Pfads $\Rightarrow \delta(s,v) \geq d_G(s,v)$
- Lemma auf letzter Folie:

Für das minmale $\delta(s, v)$ gilt: $\delta(s, v) = d_G(s, v)$

Dijkstras Algorithmus

Initialisierung $T = (\emptyset, \emptyset)$

- $\underline{\delta(s,s)} = 0$, sowie $\underline{\delta(s,v)} = \infty$ für alle $v \neq s$ $\underline{\alpha(v)} = \text{NIIII I } s$...
 - $\alpha(v) = \text{NULL für alle } v \in V$



Iterationsschritt

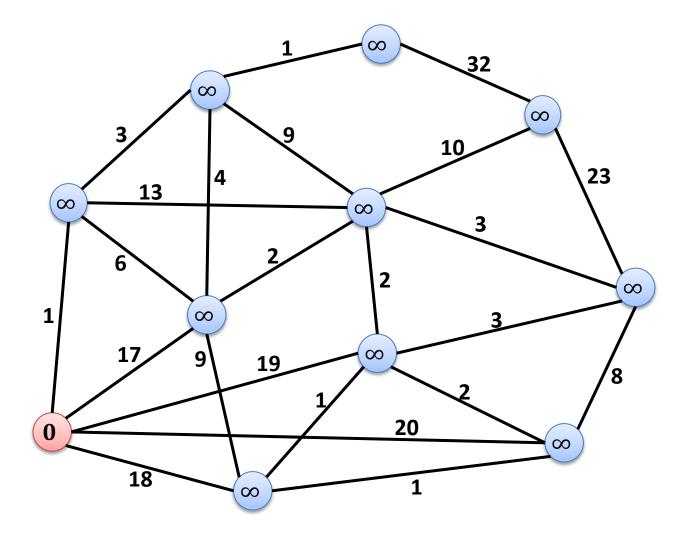
Wähle Knoten v mit kleinstem

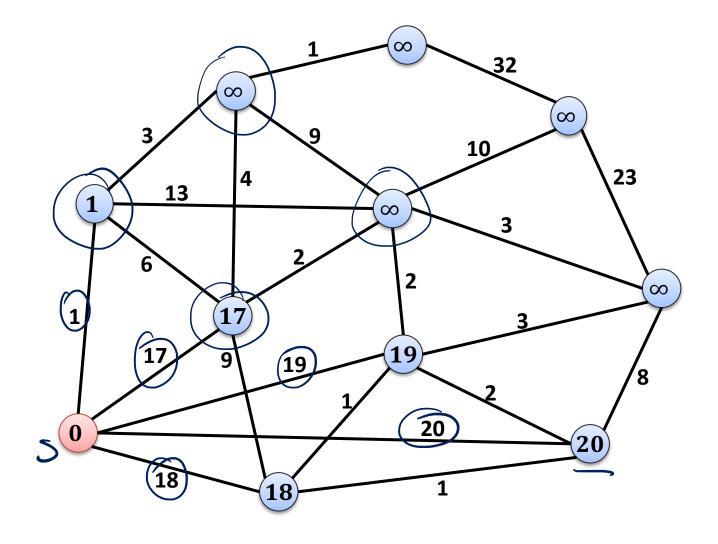
$$\delta(\underline{s,v}) \coloneqq \min_{u \in S \cap N_{\text{in}}(v)} \underline{d_G(s,u)} + \underline{w(u,v)}$$

Gehe durch die Ausgangsnachbarn $x \in V \setminus S$ und setze

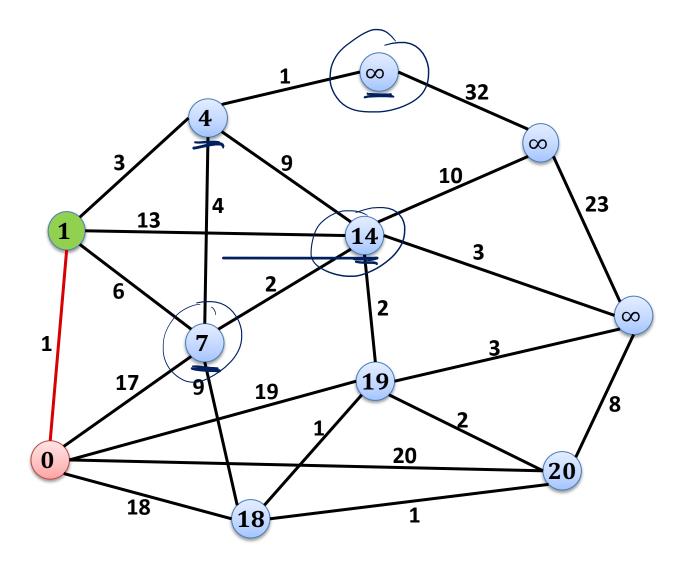
$$\delta(s,x) := \min\{\delta(s,x), \delta(s,v) + w(v,x)\}$$

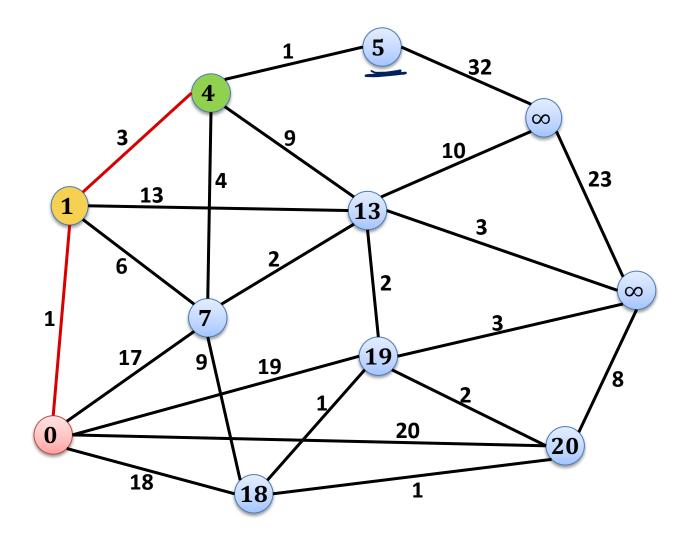
- Falls $\delta(s, x)$ verkleinert wird, setze $\alpha(x) = v$
- Füge Knoten v und Kante $(\alpha(v), v)$ zum Baum T hinzu.

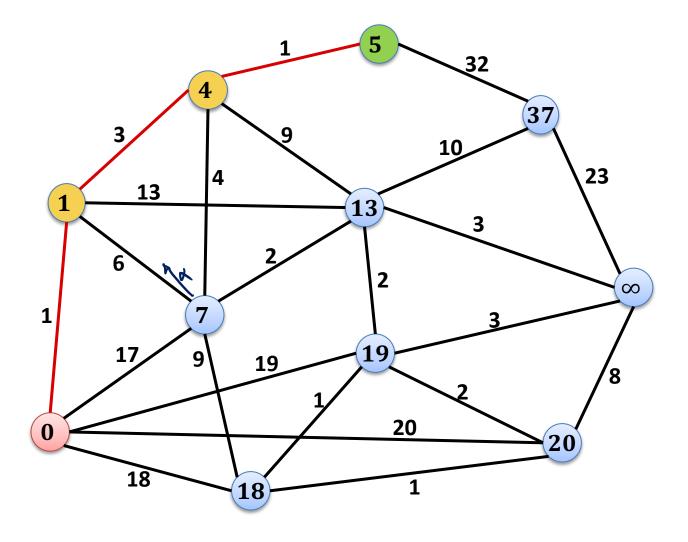


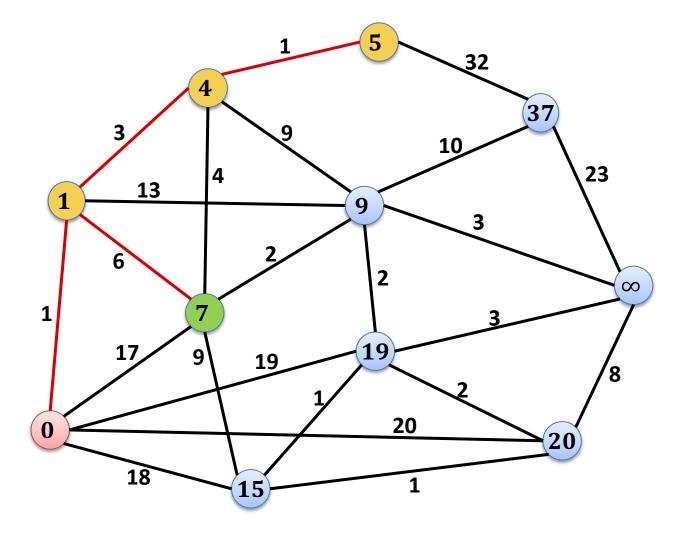


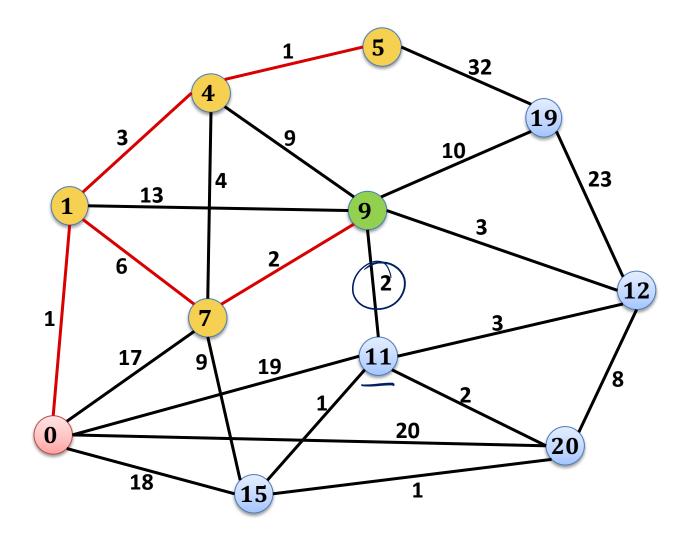
Dijkstras Algorithmus: Beispiel

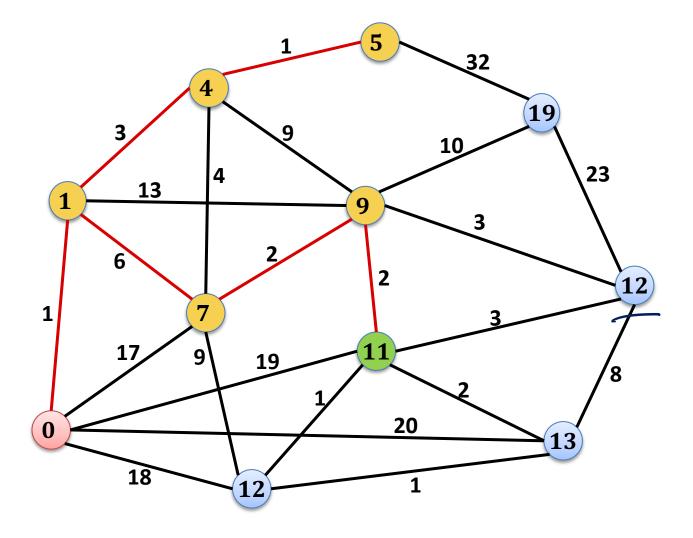








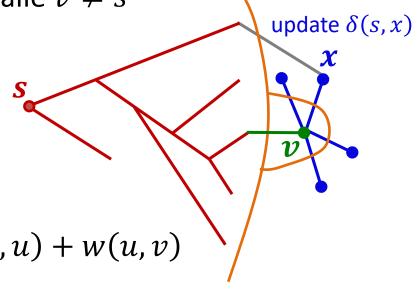




Dijkstras Algorithmus

Initialisierung $T = (\emptyset, \emptyset)$

- $\delta(s,s) = 0$, sowie $\delta(s,v) = \infty$ für alle $v \neq s$
- $\alpha(v) = \text{NULL für alle } v \in V$



Interationsschritt

ullet Wähle Knoten v mit kleinstem

$$\delta(s,v) \coloneqq \min_{u \in S \cap N_{\text{in}}(v)} d_G(s,u) + w(u,v)$$

• Gehe durch die Ausgangsnachbarn $x \in V \setminus S$ und setze

$$\delta(s,x) \coloneqq \min\{\delta(s,x), \delta(s,v) + w(v,x)\}$$

- Falls $\delta(s, x)$ verkleinert wird, setze $\alpha(x) = v$
- Füge Kante $(\alpha(v), v)$ zum Baum T hinzu.

Ähnlich wie der MST Algorithmus von Prim!

Erinnerung: Prims MST Algorithmus

```
H = new priority queue; A = \emptyset
for all u \in V \setminus \{s\} do
     H.insert(u, \infty); \alpha(u) = NULL
H.insert(s, 0)
while H is not empty do
     u = H.deleteMin()
     for all unmarked neighbors v of u do
          if w(\{u, v\}) < d(v) then
               H.decreaseKey(v, w(\{u,v\}))
               \alpha(v) = u
     u.marked = true
     if u \neq s then A = A \cup \{\{u, \alpha(u)\}\}
```

Dijkstras Algorithmus: Implementierung

```
H = new priority queue; A = \emptyset
for all u \in V \setminus \{s\} do
     H.insert(u, \infty); \delta(s,u) = \infty; \alpha(u) = NULL
H.insert(s, 0)
while H is not empty do
     u = H.deleteMin()
     for all unmarked out-neighbors v of u do
           if \delta(s,u) + w(u,v) < \delta(s,v) then
                \delta(s,v) = \delta(s,u) + w(u,v)
                H. decreaseKey(v, \delta(s, v))
                \alpha(v) = u
     u.\mathsf{marked} = \mathsf{true}
     if u \neq s then A = A \cup \{(\alpha(u), u)\}
```

Dijkstras Algorithmus: Laufzeit

- Algorithmus-Implementierung ist fast identisch, wie diejenige von Prims MST Algorithmus
- Anzahl Heap-Operationen:
 - create: $\underline{1}$, insert: \underline{n} , deleteMin: \underline{n} , decreaseKey: $\leq \underline{m}$
 - Oder alternativ ohne decrease-key: O(m) insert und deleteMin Op.
- Laufzeit mit binären Heaps:

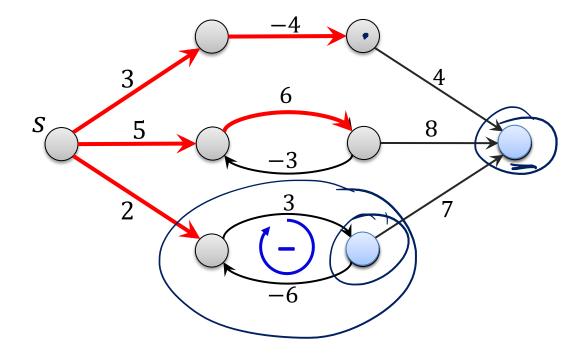
$$O(m \log n)$$

Laufzeit mit Fibonacci Heaps:

$$O(m + n \log n)$$

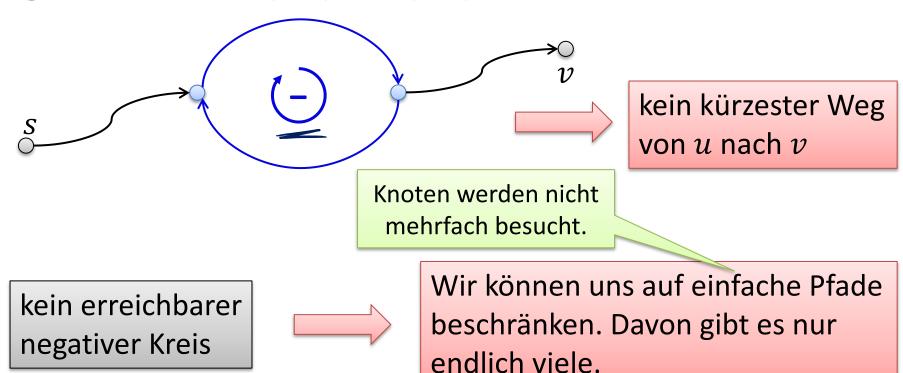
- Kürzeste Pfade können auch in Graphen mit negativen Kantengewichten definiert werden
 - Kürzester Pfad ist definiert, falls es auch keinen kürzeren Weg gibt, bei dem man Knoten mehrfach besuchen kann.

Beispiel



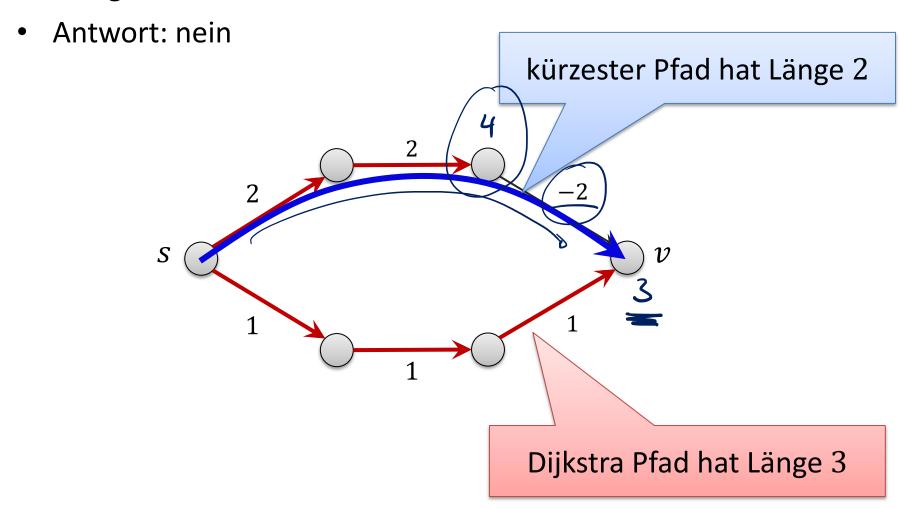
Lemma: In einem gerichteten, gewichteten Graphen G hat es genaud dann einen kürzesten Pfad von S nach V, falls es keinen negativen Kreis gibt, welcher von S erreichbar ist und von welchem V erreichbar ist.

• gilt auch für ungerichtete Graphen, falls Kanten $\{u, v\}$ als 2 gerichtete Kanten (u, v) und (v, u) betrachtet werden



Dijkstras Algorithmus und negative Gewichte

Funktioniert Dijkstras Algorithmus auch bei negativen Kantengewichten?



• Zur Vereinfachung, berechnen wir nur die Distanzen $d_G(s,v)$

Annahme:

- Für alle Knoten v: Algorithmus hat Wert $oldsymbol{\delta(s,v)} \geq d_{G}(s,v)$
- Initialisierung: $\delta(s,s) = 0$, $\delta(s,v) = \infty$ für $v \neq s$

Beobachtung:

• Falls $(u, v) \in E$, so dass $\underline{\delta(s, u)} + \underline{w(u, v)} < \underline{\delta(s, v)}$, dann können wir $\delta(s, v)$ verkleinern, da

$$\frac{d_G(s,v) \le d_G(s,u) + w(u,v)}{\le \delta(s,u) + w(u,v)}$$

Bellman-Ford Algorithmus

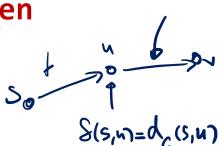
- BURG
- Betrachte alle Kanten (u,v) und versuche $\delta(s,v)$ zu verbessern
 - solange, bis alle Distanzen korrekt sind $(\forall v \in V : \delta(s, v) = d_G(s, v))$

$$\delta(s,s)\coloneqq 0; \ \forall v\in V\setminus \{s\}: \delta(s,v)\coloneqq \infty$$
 repeat for all $(u,v)\in E$ do

all
$$(u,v) \in E$$
 do

if $\delta(s,u) + w(u,v) < \underline{\delta(s,v)}$ then
$$\underline{\delta(s,v)} \coloneqq \delta(s,u) + w(u,v)$$

until $\forall v \in V$: $\delta(s, v) = d_G(s, v)$



- Wieviele Wiederholungen sind nötig?
 - Kürzeste Pfade mit einer Kante \implies 1 Wiederholung
 - Kürzeste Pfade mit zwei Kanten \implies 2 Wiederholungen
 - **–** ...
 - Kürzeste Pfade mit k Kanten $\implies k$ Wiederholungen

Bellman-Ford Algorithmus

$$\delta(s,s)\coloneqq 0; \ \forall v\in V\setminus \{s\}: \delta(s,v)\coloneqq \infty$$
 for $i:=1$ to $n-1$ do for all $(u,v)\in E$ do if $\delta(s,u)+w(u,v)<\delta(s,v)$ then $\delta(s,v)\coloneqq \delta(s,u)+w(u,v)$

Nach i Wiederholungen ist $\underline{\delta(s,v)} \leq \underline{d_G^{(i)}(s,v)}$, wobei $\underline{d_G^{(i)}(s,v)}$ die Länge des kürzesten Weges aus höchstens i Kanten bezeichnet.

Folgt per Induktion über i:

$$-i = 0: \delta(s,s) = d_G^{(0)}(s,s) = 0, v \neq s \implies \delta(s,v) = d_G^{(0)}(s,v) = \infty$$

$$-i > 0:$$

$$d_G^{(i)}(s,v) = \min \left\{ d_G^{(i-1)}(s,v), \min_{u \in N^{in}(v)} d_G^{(i-1)}(s,u) + w(u,v) \right\}$$

(kürzester Weg besteht aus $\leq i - 1$ Kanten oder aus genau i Kanten)

Bellman-Ford Algorithmus

$$\delta(s,s)\coloneqq 0; \ \forall v\in V\setminus \{s\}: \delta(s,v)\coloneqq \infty$$
 for $i:=1$ to $n-1$ do for all $(u,v)\in E$ do if $\delta(s,u)+w(u,v)<\delta(s,v)$ then $\delta(s,v)\coloneqq \delta(s,u)+w(u,v)$

Theorem: Falls der Graph keine negativen Kreise enthält, sind am Schluss alle Distanzen korrekt berechnet.

• Am Schluss haben wir für alle $v \in V$:

$$\delta(s,v) \le d_G^{(n-1)}(s,v)$$

• Weil jeder kürzeste Pfad $\leq n-1$ Kanten besteht, gilt ausserdem

$$d_G^{(n-1)}(s,v) = d_G(s,v)$$

Negative Kreise erkennen

IBURG

• Wir werden sehen: Falls es einen (von <u>serreichbaren</u>) negativen Kreis hat, dann gibt es für irgendeine Kante eine Verbesserung.

$$\exists (u,v) \in E : \delta(s,u) + w(u,v) < \delta(s,v)$$

Bellman-Ford Algorithmus

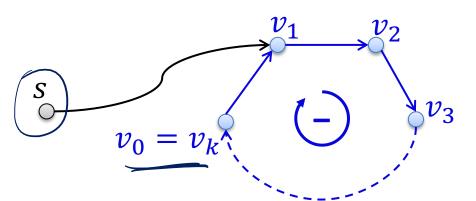
for i := 1 to
$$\underline{\mathsf{n-1}}$$
 do
$$\underbrace{\mathsf{for} \ \mathsf{all} \ (u,v) \in E} \ \mathsf{do}$$
 if $\delta(s,u) + w(u,v) < \delta(s,v)$ then
$$\delta(s,v) \coloneqq \delta(s,u) + w(u,v)$$
 for all $(u,v) \in E$ do if $\delta(\underline{s,u}) + w(u,v) < \delta(s,v)$ then return false

return true

Negative Kreise erkennen

EIBURG

Lemma: Falls G einen von S erreichbaren negativen Kreis enthält, dann gibt der Bellman-Ford Algorithmus false zurück.



neg. Kreis
$$\Rightarrow \sum_{i=1}^{k} w(v_{i-1}, v_i) \stackrel{!}{\leq} 0$$

von s erreichbar $\Longrightarrow \underline{\delta(s, v_i)} \neq \infty$

Widerpruchsbeweis:

• Annahme: $\forall i \in \{1, ..., k\} : \underline{\delta(s, v_{i-1})} + w(v_{i-1}, v_i) \ge \underline{\delta(s, v_i)}$

$$\sum_{i=1}^{k} \delta(s, v_i) \leq \sum_{i=1}^{k} \left(\delta(s, v_{i-1}) + w(v_{i-1}, v_i)\right)$$

$$= \sum_{i=1}^{k} \delta(s, v_{i-1}) + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Bellman-Ford: Kürzeste Pfade

REIBURG

Ein Shortest Path Tree kann in der üblichen Art konstruiert werden.

Initialisierung:

- $\delta(s,s) = 0$, für $v \neq s : \delta(s,v) = \text{NULL}$
- $\alpha(s) = s$ (Wurzel zeigt auf sich selbst), für $v \neq s : \alpha(v) = \text{NULL}$

In jedem Schleifendurchlauf:

• • •

if
$$\delta(s,u) + w(u,v) < \delta(s,v)$$
 then $\delta(s,v) \coloneqq \delta(s,u) + w(u,v)$ $\alpha(v) \coloneqq u$

- Am Schluss zeigt lpha(v) zum Parent in einem Shortest Path Tree
 - falls es keine negativen Kreise hat...

Bellman-Ford Alg.: Zusammenfassung

REIBURG

Theorem: Falls es einen von s erreichbaren negativen Kreis hat, wird dies vom Bellman-Ford Algorithmus erkennt. Falls kein solcher negativer Kreis existiert, berechnet der Bellman-Ford Algorithmus in Zeit $O(|V| \cdot |E|)$ einen Shortest Path Tree.

Korrektheit: haben wir schon gezeigt.

Laufzeit:

- -n-1+1 Schleifendurchläufe
- In jedem Schleifendurchlauf gehen wir einmal durch alle Kanten
- **Bemerkung:** Man kann den Algorithmus einfach so abändern, dass er für alle v, für welche ein kürzester Pfad von s existiert, einen solchen Pfad berechnet.

Routing-Pfade in Netzwerken

Ziel: Optimale Routing-Pfade zu einer Destination *t*

- Von jedem Knoten aus wollen wir wissen, zu welchem Nachbar einen Nachricht geschickt werden muss.
- Entspricht einem Shortest Path Tree, falls alle Kanten umgedreht werden (transponierter Graph)

Algorithmus:

- Knoten merken sich aktuelle Distanz $\delta(u,t)$ und den aktuell besten Nachbar
- Alle Knoten schauen gleichzeitig (parallel), ob's bei irgendeinem Nachbar eine Verbesserung gibt

$$\exists (u, v) \in E : w(u, v) + \delta(v, t) < \delta(u, t)$$

entspricht einer parallelen Version des Bellman-Ford Algorithmus

Kürzeste Wege zw. allen Knotenpaaren

all pairs shortest paths problem

Berechne single-source shortest paths für alle Knoten

- Dijkstras Algorithmus mit allen Knoten:
 - Laufzeit: $\underline{n} \cdot O(\text{Laufzeit Dijkstra}) \in O(\underline{mn} + n^2 \log n)$
 - Problem: funktioniert nur bei nichtnegativen Kantengewichten
- Bellman-Ford Algorithmus mit allen Knoten:
 - Laufzeit: $n \cdot O(\text{Laufzeit BF}) \in O(mn^2) \in O(n^4)$
 - Problem: langsam...
 - Wenn man den Bellman-Ford Algorithmus gleichzeitig für alle Knoten ausführt, kann man die Laufzeit auf $O(n^3 \cdot \log n)$ verbessern.
 - Wenn man alle $d_G^{(i)}(u,v)$ -Distanzen kennt, kann man in einem Durchlauf direkt die $d_G^{(2i)}(u,v)$ -Distanzen berechnen.
 - Details und Diskussion weiterer Verbesserungen, z.B. in der Vorlesung von 2018.