# Theory of Distributed Systems <br> Exercise Sheet 6 

Due: Tuesday, 11th of June 2024, 12:00 noon

## Exercise 1: Maximal matching

In the following, we are given a graph $G=(V, E)$ of maximum degree $\Delta$, where nodes are colored with $c$ colors, and the goal is to produce a maximal matching. A maximal matching is a subset of edges $X \subseteq E$ satisfying the following:

- For all $e_{1}, e_{2}$ in $X$, it holds that $e_{1}$ and $e_{2}$ are not incident to the same node, that is, they do not share endpoints. Hence, for each node it holds that at most one incident edge is in the matching.
- Adding any additional edge of $E \backslash X$ to $X$ would violate the above constraint.

Hence, we are interested in a subset of edges that are independent such that this subset cannot be extended.

1. Consider the case where $c=2$, that is, the graph is bipartite and properly colored with two colors, black and white. Assume that nodes know the value of $\Delta$ and $c$. Show that maximal matching can be solved in $O(\Delta)$ rounds.
Spoiler hint: see the footnote ${ }^{1}$.
2. Assume that $c$ and $\Delta$ are known to each node. Show that, for any value of $c$, this problem can be solved in $O(c \Delta)$.
3. Show that this problem can be solved in $O(c \Delta)$ even in the case where $c$ and $\Delta$ are unknown to the nodes.

## Exercise 2: Coloring planar graphs

Show how to color a planar graph with $O(1)$ colors in $O(\log n)$ time.
Hint: every planar graph satisfies that its average degree is less than 6 , where the average degree of a graph $G$ is defined to be the sum of all the degrees of the nodes in $G$ divided by the total number of nodes in $G$. Use the same idea of the algorithm for unrooted trees presented in the lecture.

## Exercise 3: Coloring unrooted trees

Show that it is possible to 3 -color unrooted trees in $O(\log n)$ time.
Hint: modify the algorithm of 9 -colors unrooted trees presented in the lecture.

[^0]
## Exercise 4: Color Reduction

a) Given a graph which is colored with $m>\Delta+1$ colors, describe a method to recolor the graph in one round using $m-\left\lfloor\frac{m}{\Delta+2}\right\rfloor$ colors. Assume $\Delta$ is known to the nodes.
Hint: Partition the set of colors into sets of size $\Delta+2$ (where only one of the sets might be of size less than $\Delta+2$ ), and recall the color reduction method from the lecture.
b) Show that after $O(\Delta \log (m / \Delta))$ iterations of step a), one obtains a $O(\Delta)$ coloring.


[^0]:    
    

