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In all the exercises of this problem set, we consider the synchronous message passing model on a graph,
where nodes operate in synchronous rounds and all nodes start a computation together at time 0. We
assume that initially, nodes do not know the IDs of their neighbors. Note that we will always denote
by n the number of nodes in the graph and m the number of edges in the graph.

Exercise 1: Leader Election in General Graphs (5 Points)

Consider the following leader election algorithm. For simplicity, we assume that every node knows the
graph diameter D. Every node u stores the largest ID it has seen in variable xu. Each node u ∈ V
carries out the following algorithm.

Node u initially sets xu :=ID(u) and sends xu to its neighbors
for D − 1 rounds do

if xv > xu for the largest value xv that u received then
u sets xu := xv and sends xu to all neighbors from which it has not received a value
equal to xv

end if
end for

After D rounds, the value xu of each node u equals the largest ID in the network.

What is the message complexity of this algorithm (in terms of n)? Give an example that shows that
your given bound is asymptotically tight (in the worst case) i.e. if B(n) is your message complexity,
give a family of graphs where your algorithm indeed has a message complexity of Ω(B(n)).

Sample Solution

In every round of the algorithm, at most 2m messages are sent (at most one in each direction via each
edge). The message complexity is therefore O(D ·m), which is O(n3) in the worst case.
To show that this bound is tight in the worst case, we construct for a given n a graph, where Ω(n3)
messages are sent, in the following way: nodes with IDs n, . . . , ⌈n/2⌉ form a path, nodes with IDs
⌈n/2⌉, . . . , 1 form a clique. Let v be the node with ID ⌈n/2⌉. For ⌈n/2⌉ − 1 rounds, v updates xv
and forwards it to its ⌈n/2⌉ − 1 neighbors in the clique, which in the following round update their
values and forward them to ⌈n/2⌉ − 2 nodes (every node in the clique except themselves and v). So
for ⌈n/2⌉ − 1 rounds, there are at least (⌈n/2⌉ − 1)(⌈n/2⌉ − 2) messages sent per round.

Exercise 2: Leader Election via Radius Growth (9 Points)

We generalize the radius growth algorithm for leader election from the lecture to arbitrary graphs.
Assume that every node knows the number of nodes in the graph. The algorithm consists of phases
i = 0, 1, 2, . . . . Let Ci be the set of leader candidates at the beginning of phase i. Set C0 = V
(initially, each node is a leader candidate). Phase i of the algorithm consists of 2i rounds. The
algorithm terminates when 2i ≥ n. In phase i, each node u ∈ V carries out the following algorithm.



If u ∈ Ci, u initializes xu :=ID(u) and sends xu to its neighbors (otherwise, u initializes xu := −1).
for 2i − 1 rounds do

if xv > xu for the largest value xv that u received then
u sets xu := xv and sends xu to all neighbors from which it has not received a value
equal to xv

end if
end for
if u ∈ Ci ∧ xu ==ID(u) then

u joins Ci+1 (i.e., u stays a candidate)
end if

a) Show that the number of messages sent in phase i is O(min{2i, |Ci|} ·m).

b) Show that |Ci| ≤ 4n
2i

for each phase i.

c) Show with a) and b) that the message complexity of the algorithm is at most O(m
√
n log n).

d) For m = Ω(n2), the upper bound from c) becomes O(n5/2 log n). Give an example network on
which the algorithm requires Ω(n5/2) messages.

Sample Solution

a) On one hand, phase i consists of 2i rounds and in one round at most 2m messages are sent, so
there are at most O(2i ·m) messages.
On the other hand, in each phase only the values of nodes in Ci are broadcasted, each edge
transports such a value at most once in each direction and we have |Ci| such values, then that
yields an upper bound of O(|Ci| ·m) messages.

b) In phase i, two candidates u, v ∈ Ci have distance at least 2i−1, as otherwise the one with the
smaller ID would have lost its candidate status at the end of phase i− 1.
Consider the balls with radius 2i−2 − 1 around u and v i.e. B2i−2−1(u) and B2i−2−1(v). They are
disjoint (no node is contained in two different balls). Each of these balls contains at least 2i−2

nodes. It follows that n ≥ |Ci| · 2i−2.

Recall definition: for a vertex u of graph G and an integer r, the ball of radius r centered at u
denoted Br(u) is the subgraph induced by the set of all vertices of G whose distance from u does
not exceed r.

c) It is enough to show that min{2i, |Ci|} ∈ O(
√
n) for every phase i to prove our message complexity.

We notice that in each phase i, if 2i ≤ |Ci|, then min{2i, |Ci|} = 2i ≤ |Ci| ≤ 4n
2i

(from part b), thus

(2i)2 ≤ 4n, then 2i ≤ 2
√
n. And if |Ci| ≤ 2i, then min{2i, |Ci|} = |Ci| ≤ 2i ≤ 4n

|Ci| (from part b),

thus |Ci|2 ≤ 4n, then |Ci| ≤ 2
√
n. Hence in both cases, min{2i, |Ci|} ≤ 2

√
n, which shows what

we want.

d) For a given n, we construct a graph with n nodes in the following way. For i = 1, . . . ,
√
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Ω(n) additional nodes and together with the nodes vii, they will form a clique. For each i, node

v
√
n−i

1 has the ith-largest ID in the graph.

When running the algorithm on this graph, there are at least
√
n rounds in which an ID reaches

the clique which is larger than the ones it has seen before. Then all Ω(n) nodes v in the clique
update their value xv and send it to their Ω(n) neighbors in the following round. So there are at
least

√
n rounds with a message complexity of Ω(n2).



Exercise 3: Leader Election in Complete Graphs (6 Points)

In a complete graph, one can trivially solve leader election in one round if every node sends its ID
to all its neighbors. This requires Ω(n2) messages. The following algorithm uses less messages at the
cost of a slightly higher time complexity.

The algorithm consists of phases i = 1, 2, . . . . Let Ci be the set of leader candidates at the beginning
of phase i. Set C1 = V (initially, each node is a leader candidate). In phase i, each node u ∈ V carries
out the following algorithm.

if u ∈ Ci then
u sends a probe message (may I be a leader?) containing its ID to min{2i, n− 1} arbitrary
neighbors.

end if
Let v be the node with the largest ID from which u received a probe message
if ID(v) >ID(u) then

u sends back an acknowledgement to v
end if
if u received 2i acknowledgements then
u joins Ci+1 (i.e., u remains a candidate)

end if

a) Argue that the algorithm solves leader election and analyze its time complexity.

b) Show that |Ci| ≤ n
2i−1 for each phase i ≥ 1.

c) Analyze the message complexity.

Sample Solution

a) The node with maximum ID remains candidate in every phase. In phase ⌈log n⌉ all candidates
send probes to all other nodes and thus the node with maximum ID is the only one surviving. As
a phase consists of two rounds, the runtime is O(log n).

b) For u ∈ Ci, let Au ⊆ V be the set of nodes from which u received an acknowledgement. We have
|Au| = 2i−1 (from phase i− 1) and for u, v ∈ Ci we have Au ∩Av = ∅. Therefore, n ≥ |Ci| · 2i−1.

c) In phase i except the last, there are at most 2 · |Ci| · 2i messages sent and at most 2 · |Ci| · (n− 1)
messages for the last phase. With b) it follows that the message complexity of each phase is O(n).
As the algorithm has log n phases, its message complexity is O(n log n).


