University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

S. Faour, M. Fuchs,

7. Parsaeian, G. Schmid

Theory of Distributed Systems

Sample Solution Exercise Sheet 10
Due: Wednesday, 12th of July 2023, 12:00 noon

Exercise 1: Gather everything in CONGEST (5 Points)

We are given a connected graph G = (V, E) and we want each node to know the whole graph. We
have seen during the lecture that such problem can be solved in O(diam(G)) rounds in the LOCAL
model. Show that it is possible to solve this problem in O(|E]) in the CONGEST model.

Sample Solution

Algorithm: We use a similar approach as in the wave algorithm for APSP.
1. First we construct a BFS tree (with the “proposal 4+ accept” procedure seen in the lecture).
2. Then we move a token along the BFS tree.
3. For each node that is visited by the token do:

3.1 The node broadcasts its incident edges (in G!) in a “wave” over a tree, one edge per wave.

3.2 After all edges are sent we wait one more round.

3.3 Move the token to the next node and repeat (until the token visited all nodes once)
Running time: It takes O(diam(G)) to construct the BFS tree. Note that we can encode each
edge with O(logn) bits, thus it is possible to send edges ’'step-by-step’ to neighbors in CONGEST
(while it is not possible to send all incident edges in one round). As the token that traverses the tree
will generate at most O(|E|) waves (at most 2 waves per edge) and since we create a wave at least
every other round, it takes at most O(|E|) rounds until all waves are started. Finally it takes at most

O(diam(G)) until the last wave is received by all nodes. So overall it takes O(|E| + diam(G)) rounds.
Since the graph is connected we have O(diam(G)) C O(|E)).

Exercise 2: APSP — Slow token (5 Points)

During the lecture we have seen two animations of the APSP algorithm:
e One where the token is moved slowly (every 2 rounds), and there are no waves that collide.
e One where the token is moved fast (every round), and many waves collide.

Prove that it is indeed true that, if we move the token every two rounds, each node at each round has
to propagate at most one wave.

Sample Solution

Suppose, for a contradiction, that there exists a node v that in a certain round obtains messages
from at least 2 waves, W1 and Ws. Let wy and ws be the nodes that started the waves Wy and W5,
respectively. Let x := d(v,w1) and y := d(v,ws). If =y, then wy, w2 would be at the same distance
from v, thus they have started the wave at the same time. But this is a contradiction since only one
node (the one that holds the unique token) can start a wave in a given round.

So consider the case x > y (w.l.o.g.). Since W; and Wy (supposedly) hit v at the same time, the
difference between travel time of W7 and W, i.e., the time difference when W7 and W5 have been
started is « — y rounds. So x — y corresponds to the number of rounds the token takes travelling from
wy to wy. Thus the distance between nodes w; and wy can be at most (z — y)/2 since we move the
token at most every two rounds. By triangle inequality we obtain the following contradiction

r—y xT+y

r=d(v,w) < d(v,ws) + d(wz,w1) <y + 5~ 3 < x.

Exercise 3: Bipartite Graph Detection (5 Points)

In this exercise we say that in order to detect if the graph G = (V, E) has a certain property in
the CONGEST model, all nodes have to output 1 if the graph fulfills that property, otherwise all
nodes have to output 0. A graph is called bipartite if its nodes can be partitioned into two sets, i.e.,
V = AUB,AN B = {), such that for all edges {u,v} € E we have u € A and v € B (or vice versa).
Show that it is possible to detect if the graph is bipartite or not in O(diam(G)) rounds.

Sample Solution

The idea is to use the fact that any bipartite graph is 2-colorable, and any graph that is 2-colorable
is a bipartite graph. We start by electing a leader and constructing a BFS tree rooted at the leader
in O(diam(G)) rounds. Now we 2-color the BFS tree in the following way: leader picks color 1 and
informs its children. Then each other node, once it receives the color of the parent, they pick the
color that is different from the parent’s one, and if they have children they forward their color to the
children. In O(diam(G)) rounds we get a 2-colored BF'S tree—mnotice that a 2-coloring of G implies a
2-coloring of the BF'S tree, and 2-coloring of the BF'S tree implies a 2-coloring of G if G is bipartite.

So now what is left is to check whether the two coloring is actually a 2-coloring of the graph. For
this, nodes spend 1 round and exchange their color with the neighbors. If a node notices a conflict
on the coloring, it will set a flag variable b = 0, otherwise b = 1. Now, as in the previous exercises,
we aggregate these bit flags from leaves towards the root, where each non-leaf node will compute the
logical “and” from its flag and the ones received from its children. In O(diam(G)) rounds the root will
know the result of the “and” aggregation of all bits. If and only if the result of the bit aggregation at
the root is 1 the graph has no conflicts and is in fact bipartite.

Exercise 4: Diameter Lower Bound — Refinement (5 Points)

In the lecture we have seen that computing the diameter diam(G) of G in the CONGEST model
takes Q(n/logn) rounds in general. Argug that the same lower bound holds even for computing an
approximate value D with 1 - diam(G) < D < diam(G).

Sample Solution

We have seen in the lecture that there is a worst case graph in which it takes Q(n/logn) rounds to
decide whether it has diameter 4 or 5. For a contradiction, assume there would be an algorithm A
that computes an approximate value D with % - diam(G) < D < diam(G) for any graph G in time

o(n/logn).

We apply this algorithm A on the worst case graph given in the lecture (we assume that this is G
now) to compute D with 2 . diam(G) < D < diam(@). If diam(G) = 4 then D < 4. If diam(G) = 5
then D > 2. diam(G) = 4.
So by running algorithm A on G and afterwards outputting “diam(G) = 4”7 if D < 4, and “diam(G) =
57 if D > 4, in fact solves the original problem of distinguishing if G has diameter 4 or 5 in time
o(n/logn), a contradiction.

