
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, A. Mályusz

Theory of Distributed Systems

Sample Solution Exercise Sheet 11
Due: Wednesday, 17th of July 2024, 12:00 noon

Exercise 1: Aggregation in the MPC Model (15 Points)

Assume you are given a number of M ∈ O
(
N
S logS N

)
machines, where N is the number of aggregation

messages that are collectively stored by the machines Mi, i ∈ {1, . . . ,M}. Each machine Mi has a
memory large enough to store S such messages. By definition of the MPC model every machine can
send and receive at most S aggregation messages per round.

Each aggregation message m has an aggregation value vm, a target machine tm and an aggregation
group gm. All messages in the same group go to the same target and each machine is the target of
not more than one aggregation group. The aggregation problem is solved when every target machine
tm learns an aggregation message m that has minimal value among all aggregation messages of its
aggregation group gm. Formulate an algorithm that solves said aggregation problem in O(logS N)
rounds such that no machine sends or receives more than S/2 messages per round in expectation.

Simplifications: You may assume that the intial aggregation messages are stored on ⌈NS ⌉ machines
and none of those machines is a target of an aggregation message. This means that machines can be
partitioned into O(logS N) levels with a separate level for sources and targets of aggregation messages,
respectively. You may further assume that we have sufficient long string of “public random bits”, which
can be used to make random decisions that are the same for all machines, (since all machines utilize
the same random bit string).

Sample Solution

We arrange the O
(
N
S logS N

)
machines into ℓ := 1 + ⌈logS/2N⌉ ∈ O(logS N) levels L1, . . . , Lℓ of

2⌈NS ⌉ + 2 machines each.Furthermore, we arrange the levels such that initially all messages are held
only by machines in L1 (“message sources”), and the targets of the aggregation messages are in level
Lℓ.
Outline: The idea of solving the above aggregation problem is to establish aggregation trees between
machines of successive levels. There will be one aggregation tree for each aggregation group with leaves
in L1 and roots in Lℓ. The messages are then send up the trees like in a converge cast. Machines will
choose their according tree parents in the next level randomly, which ensures that no machine obtains
too many messages in expectation.

Aggregation trees on first level: For level 1, we say that a machine in L1 that has a message m
with the aggregation group gm, participates in the aggregation tree of that group gm (a given machine
can participate in multiple aggregation groups, as it holds multiple messages).

For each aggregation group g the machines in L1 choose a random subset L2
g from the next level L2

of size |L2
g| = N · (2S)

2. Note that all machines participating in the aggregation tree of group g can all
agree on the same random set L2

g using the public randomness.

Then each machine that takes part in group g picks a random parent node from L2
g. Note that this

random decision is now independent from the parent choice of other machines! By doing this for all

machines in L1 and for aggregation groups, each machine in L1 will now have a parent node for each
aggregation group it participates in, see Figure 1.

L2

Li−1

Li

L`

L1

L2
redL2

blueL2
orange

Figure 1: Three example machines in L1 that have messages (little colored boxes) from
three aggregation groups (orange, blue, red). We determine random sets of machines from
L2
orange, L

2
blue, L

2
red. Each machine picks a random parent from the according random set for each

group it participates in.

Aggregation trees for subsequent levels: The description above forms the base case above and
now we describe how to connect Li−1 to level Li for 2 < i ≤ ℓ − 1. We say that a machine µ ∈ Li−1

participates in aggregation group g if it is in the according set µ ∈ Li−1
g .

L2

Li−1

Li

L`

L1

Li−1
redLi−1

blueLi−1
orange

Li
redLi

blue
Li
orange

Figure 2: Nodes in Li−1
g choose a parent uniformly at random from Li

g (g = orange, blue, red).

Similar as before, for each aggregation group g the machines in Li−1 choose a random subset Li
g from

the next level Li of size |Li
g| = N · (2S)

i. Again, all machines agree on the same random sets Li
g using

public randomness. Let µ be a machine that participates in aggregation group g. As before, it chooses
a parent in Li

g uniformly at random (and also independent from other machines), c.f. Figure 2.

We have to make a distinction for the last level ℓ. There we simply connect all nodes in aggregation
group Lℓ−1

g to the respective target t ∈ Lℓ (c.f., Figure 3).

L2

L`

L1

Li

L`−1

L`−1
red

L`−1
blueL`−1

orange

Figure 3: Nodes in Lℓ−1
g create an edge to the target machine of group g (g = orange, blue, red).

Aggregation Algorithm: In round i, every machine in level i sends for every aggregation group gm
it has a message of, one message m with smallest value vm among all messages that this machine has
from that group gm to its parent in Li+1

gm .

Analysis: Since one minimum value message of each group will always be forwarded to the target
(root) of the aggregation tree, the target machine will eventually learn a minimum value message of
its group, thus the algorithm is correct.

The runtime is also not hard to see. We have to iterate through the layers of the above structure and
in each layer first determine parent machines and then send the messages to the appropriate parent
machines. This takes O(1) per layer and we have ℓ ∈ O(logS N) layers.

Now we argue why the property of these aggregation trees that each node obtains at most S messages,
is true in expectation. Let µ ∈ Li. Since we pick N(2S)

i machines for Li
g out of the level Li of size

2⌈N/S⌉+ 2, we have that

P
(
µ ∈ Li

g

)
=

|Li
g|

|Li|
=

N(2S)
i

2⌈N/S⌉+ 2
≤ 2i−1

Si−1
.

The probability that µ is chosen as parent by some µ′ ∈ Li−1
g , conditioned on the above event is

P
(
µ parent of µ′ | µ ∈ Li

g

)
=

1

|Li
g|

=
Si

N · 2i
.

The general probability that µ is parent of some fixed µ′ ∈ Li−1 is

P
(
µ parent of µ′) = P

(
µ parent of µ′ | µ ∈ Li

g

)
· P

(
µ ∈ Li

g

)
≤ S

2N
.

Let i < ℓ. Consider a message that some machine µ′ ∈ Li−1 has. The probability that µ ∈ Li is
the recipient of this message is then P

(
µ parent of µ′). Since on each level the maximum number of

messages is at most N , we have that µ gets at most N ·P
(
µ parent of µ′) ≤ S

2 messages in expectation.

Let i = ℓ (last level). We have to argue that the targets do not have a large in degree. Since we chose
ℓ = 1 + ⌈logS/2N⌉, we have that

|Lℓ−1
g | = N ·

(2
S

)ℓ−1 ≤ N ·
(2
S

)(logS/2 N)−1
= N ·

(2
S

)logS/2 N · S
2
= N · 1

N
· S
2
=

S

2
,

therefore, machine µ in level ℓ will be parent of at most S
2 many machines in level Lℓ−1

g , and since

each machine is target of at most one aggregation group will get at most S
2 messages.

Exercise 2: Implement a Phase of Bor̊uvka’s Algorithm (5 Points)

In class, we sketched how to implement one phase of Bor̊uvka’s MST algorithm in the strongly sublinear
regime S = nα for some constant 0 < α < 1. Argue in more detail how this can be done in O(1)
rounds, given that we can solve the above aggregation problem.

Sample Solution

Recall that Bor̊uvka’s algorithm iteratively constructs MSTs on ever larger subgraphs, by connecting
pairs of trees with a minimum weight edge between them in each phase. Each machine was responsible
for such a tree, or rather the set of nodes connected by that tree, which we called a fragment.

Each fragment has in ID (usually the smallest node ID in the fragment). During the algorithm we
had to maintain the invariant that for each edge the machine that stores that edge has to know which
fragments its endpoints are in. The machine responsible for a given fragment then has to learn the
minimum weight edge that is ougoing from its fragment, and have to do this for all fragments. Clearly
this is an aggregation problem.

For each fragment ID x we generate an aggregation group and the target of this group is the machine
responsible for fragment x. Then each machine that has an edge with exactly one endpoint in fragment
x makes a message containing that edge and associated information. We then solve the aggregation
problem above. Afterwards the machine responsible for x knows the minimum weight outgoing edge
for fragment x and can merge the corresponding fragments.

We can then broadcast the information of merged fragments down the aggregation trees again (which
is in some sense the “reverse” of the prior converge cast and does not take any longer). After that
broadcast all machines know the new fragments of their edges and the next Bor̊uvka phase can start.

We have that S = nα for a constant α. We have at most N = n2 messages. The runtime to solve the
aggregation problem and to do the broadcast down the aggregation trees is

O(logS N) = O(lognα(n2)) = O(2 lognα n) = O(
1

α
).

