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Objective: Assign a color to each node such that:

• Neighbouring nodes get different colors

• The total number of different colors is as small as possible

Vertex coloring



Objective: Select nodes such that:

Maximal independent set (MIS)
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Objective: Select nodes such that:

• Selected nodes form an independent set (they are not neighbors)

• The independent set is maximal (any non-selected node has at least one neighbor that 

is selected)
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Maximal independent set (MIS)



• The network is modeled as a graph

Distributed graph coloring
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Distributed graph coloring
• The network is modeled as a graph



• Communication: message passing
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Distributed graph coloring
• Communication: message passing



• Synchronous rounds:


‣ Each node does some internal computation


‣ Sends messages to neighbors


‣ Receives messages from neighbors
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Distributed graph coloring



• Synchronous rounds:


‣ Each node does some internal computation


‣ Sends messages to neighbors


‣ Receives messages from neighbors
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Distributed graph coloring



• Unbounded internal computation


• Unbounded size of messages


Notation:


• n, number of nodes


• Δ, maximum degree in the graph


• deg(v), degree of node v
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LOCAL model



• Objective: solve some graph problem (e.g., MIS, vertex coloring)


• At the start: each node knows only its own ID


• At the end: each node must know its part of the output 


‣ Coloring: its color 


‣ MIS: whether it is in or out the MIS
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Distributed graph algorithms



Local outputs form a consistent global solution

Distributed graph algorithms



• Wireless Networks:


‣ Assign communication channels while avoiding collisions (coloring)


‣ Basic clustering in wireless networks (MIS)


• Generally:


‣ Important symmetry breaking problems


‣ Used as subroutine in many algorithms


‣ Techniques for solving these problems may apply for solving other problems of 
interest

Application of coloring and MIS



Sequential greedy coloring



MIS:


• S is an independent set, and each node u ∉ S has a neighbor in S (S is maximal)


S ≔ ∅

for all v ∈ V do    // go through nodes in an arbitrary order 


 if v has no neighbor in S, add v to S

Sequential greedy coloring



MIS:


• S is an independent set, and each node u ∉ S has a neighbor in S (S is maximal)


Coloring (use colors 1, 2, 3, …)


• Computes a valid (a.k.a. proper) coloring

all nodes uncoloured

for all v ∈ V do    // go through nodes in an arbitrary order 


 assign to v the smallest color not used by its neighbors

S ≔ ∅

for all v ∈ V do    // go through nodes in an arbitrary order 


 if v has no neighbor in S, add v to S

Sequential greedy coloring



MIS:


• S is an independent set, and each node u ∉ S has a neighbor in S (S is maximal)


Coloring (use colors 1, 2, 3, …)


• Computes a valid (a.k.a. proper) coloring

• What is the number of colors?

all nodes uncoloured

for all v ∈ V do    // go through nodes in an arbitrary order 


 assign to v the smallest color not used by its neighbors

S ≔ ∅

for all v ∈ V do    // go through nodes in an arbitrary order 


 if v has no neighbor in S, add v to S

Sequential greedy coloring



Greedy vertex coloring: how many colors?
• node v cannot get color 1: there must exist a neighbor of v with color 1


• node v cannot get color 2: there must exist a neighbor of v with color 2


• node v cannot get color 3: there must exist a neighbor of v with color 3
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Greedy vertex coloring: how many colors?
• node v cannot get color 1: there must exist a neighbor of v with color 1


• node v cannot get color 2: there must exist a neighbor of v with color 2


• node v cannot get color 3: there must exist a neighbor of v with color 3


• Each node v gets one of the first deg(v) + 1 colors


• Hence one of the first deg(v) + 1 colors is free for v


• For each node v, color(v) ≤ deg(v) + 1 ≤ Δ + 1
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Theorem: greedy vertex coloring requires at most Δ + 1 colors




Usually, the target number of colors is Δ + 1 

• Sometimes we want less colors, and we will see some of such examples


Distributed vertex coloring



Distributed coloring algorithm
How can we color in a distributed way? 


• Each node picks the smallest available color


‣ Available = color not picked by any neighbor


‣ How to avoid conflicts between neighbors?


‣ Neighbors should not choose a color at the same time!



Distributed greedy vertex coloring
Distributed greedy coloring for a node v


1. wait until all neighbors of v with a smaller ID have a color

2. v chooses the smallest available color

3. v informs its neighbors

• No two neighbors choose a color at the same time: proper coloring with at most Δ + 1 colors

• Computes the same coloring as the sequential greedy algorithm when going through the nodes in order 

defined by IDs




Distributed greedy coloring for a node v


1. wait until all neighbors of v with a smaller ID have a color

2. v chooses the smallest available color

3. v informs its neighbors

• No two neighbors choose a color at the same time: proper coloring with at most Δ + 1 colors

• Computes the same coloring as the sequential greedy algorithm when going through the nodes in order 

defined by IDs


Distributed greedy MIS for a node v

1. wait until all neighbors of v with a smaller ID are decided

2. v joins MIS if no neighbor of v is already in the MIS

3. v informs its neighbors


Distributed greedy vertex coloring



Theorem: The distributed greedy algorithms for (Δ + 1)-vertex coloring and MIS 
terminate after at most O(n) rounds


• In each round, at least one new node is processed


‣ the node with smallest ID among the unprocessed nodes


• O(n) rounds is very slow but unfortunately it is tight


1 2 3 4 5 n-2 n-1 n. . .

Distributed greedy: time complexity



Theorem: The distributed greedy algorithms for (Δ + 1)-vertex coloring and MIS 
terminate after at most O(n) rounds


• In each round, at least one new node is processed


‣ the node with smallest ID among the unprocessed nodes


• O(n) rounds is very slow but unfortunately it is tight


1 2 3 4 5 n-2 n-1 n. . .

Distributed greedy: time complexity



Theorem: The distributed greedy algorithms for (Δ + 1)-vertex coloring and MIS 
terminate after at most O(n) rounds


• In each round, at least one new node is processed


‣ the node with smallest ID among the unprocessed nodes


• O(n) rounds is very slow but unfortunately it is tight


2 3 4 5 n-2 n-1 n. . .

Distributed greedy: time complexity



Theorem: The distributed greedy algorithms for (Δ + 1)-vertex coloring and MIS 
terminate after at most O(n) rounds


• In each round, at least one new node is processed


‣ the node with smallest ID among the unprocessed nodes


• O(n) rounds is very slow but unfortunately it is tight


2 3 4 5 n-2 n-1 n. . .

Distributed greedy: time complexity



Theorem: The distributed greedy algorithms for (Δ + 1)-vertex coloring and MIS 
terminate after at most O(n) rounds


• In each round, at least one new node is processed


‣ the node with smallest ID among the unprocessed nodes


• O(n) rounds is very slow but unfortunately it is tight


3 4 5 n-2 n-1 n. . .

Distributed greedy: time complexity



Theorem: The distributed greedy algorithms for (Δ + 1)-vertex coloring and MIS 
terminate after at most O(n) rounds


• In each round, at least one new node is processed


‣ the node with smallest ID among the unprocessed nodes


• O(n) rounds is very slow but unfortunately it is tight
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Theorem: The distributed greedy algorithms for (Δ + 1)-vertex coloring and MIS 
terminate after at most O(n) rounds


• In each round, at least one new node is processed


‣ the node with smallest ID among the unprocessed nodes


• O(n) rounds is very slow but unfortunately it is tight


• Can we be faster?


‣ How to process many nodes in parallel while avoiding conflicts?


• Observation: we can be faster if we are already given a proper coloring with C colors

. . .

Distributed greedy: time complexity



Assumption: we are given a proper C-coloring of the nodes (with colors 1, 2, … , C)


• In both algorithms, we can replace IDs with these colors


The algorithm runs in phases 1, 2, … , C

In phase i:

• Nodes with initial color i are processed

‣ Coloring: pick smallest available color


‣ MIS: join MIS if no neighbor is in MIS


• At the end of the phase, newly processed nodes inform neighbors


• The algorithm works because only non-adjacent nodes are processed in parallel


• Time complexity: C rounds

From C-coloring to (Δ + 1)-coloring and MIS



Assumption: we are given a proper C-coloring of the nodes (with colors 1, 2, … , C)


• In both algorithms, we can replace IDs with these colors


The algorithm runs in phases 1, 2, … , C

In phase i:

• Nodes with initial color i are processed

‣ Coloring: pick smallest available color


‣ MIS: join MIS if no neighbor is in MIS


• At the end of the phase, newly processed nodes inform neighbors


• The algorithm works because only non-adjacent nodes are processed in parallel


• Time complexity: C rounds

From C-coloring to (Δ + 1)-coloring and MIS

Can we do better?



Assumption: we are given a proper C-coloring of the nodes (with colors 1, 2, … , C)


• In both algorithms, we can replace IDs with these colors


The algorithm runs in phases 1, 2, … , C

In phase i:

• Nodes with initial color i are processed

‣ Coloring: pick smallest available color


‣ MIS: join MIS if no neighbor is in MIS


• At the end of the phase, newly processed nodes inform neighbors


• The algorithm works because only non-adjacent nodes are processed in parallel


• Time complexity: C rounds

From C-coloring to (Δ + 1)-coloring and MIS

Can we do better?



Let’s first take a look at special classes of graphs


Rooted trees:


• Graph is a tree, each node knows which neighbor is its parent


• The root knows it is the root

Coloring special graph classes



Trees can be colored with 2 colors:

• Color 0: even distance to root


• Color 1: odd distance to root


Distributed algorithm:

• Color level by level, starting at the root 


Time complexity: O(D)


This is tight and can be ϴ(n):


Nodes need to know the parity of their distance to the root (formal argument in a later lecture)

. . .

Coloring special graph classes



Color reduction:


• Assume we are given a proper coloring with C colors


‣ Initially, if we have unique IDs from an ID space of size N, we have C = N


• Can we reduce the number of colors?


‣ What happens if we reduce them iteratively?

Coloring rooted trees with more colors



Specific assumption: 


• Initital coloring with colors in {0, … , C - 1} for some C ∈ ℕ (each node knows C)


• Interpret color as bit string of length⎡log2 C⎤


• Example for C = 12

0 11 8

5

11 7 3

0101

10000000

1011

1011 0111 0011

Coloring rooted trees with more colors



• Consider node u and its parent v with colors cu and cv (cu ≠ cv)

‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu

Cole-Vishkin color reduction scheme

New color of u: 

c’u = 2 · iu + bu
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c’u = 2 · iu + bu


cu = 60346

cv = 13242




• Consider node u and its parent v with colors cu and cv

‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu
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• Consider node u and its parent v with colors cu and cv

‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 
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‣ xu: binary representation of cu 
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• Consider node u and its parent v with colors cu and cv

‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}
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• Consider node u and its parent v with colors cu and cv

‣ xu: binary representation of cu 


‣ xv: binary representation of cv      
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• Consider node u and its parent v with colors cu and cv

‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu
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Cole-Vishkin color reduction scheme

cu = 60346

cv = 13242

iu = 11

bu = 1

New color of u: 

c’u = 2 · iu + bu

c’u = 2 · 11 + 1 = 23
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Cole-Vishkin color reduction scheme
• Consider node u and its parent v with colors cu and cv


‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu


Theorem: For any two neighbors, if cu ≠ cv then it holds c’u ≠ c’v
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Cole-Vishkin color reduction scheme
• Consider node u and its parent v with colors cu and cv


‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu


Theorem: For any two neighbors, if cu ≠ cv then it holds c’u ≠ c’v


Proof: 

• we have that c’u = 2 · iu + bu and  c’v = 2 · iv + bv


• we have that c’u ≠ c’v  if and only if iu ≠ iv or bu ≠ bv
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• Consider node u and its parent v with colors cu and cv


‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu


Theorem: For any two neighbors, if cu ≠ cv then it holds c’u ≠ c’v


Proof: 

• we have that c’u = 2 · iu + bu and  c’v = 2 · iv + bv


• we have that c’u ≠ c’v  if and only if iu ≠ iv or bu ≠ bv


• w.l.o.g., assume v is the parent of u
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Cole-Vishkin color reduction scheme
• Consider node u and its parent v with colors cu and cv


‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu


Theorem: For any two neighbors, if cu ≠ cv then it holds c’u ≠ c’v


Proof: 

• we have that c’u = 2 · iu + bu and  c’v = 2 · iv + bv


• we have that c’u ≠ c’v  if and only if iu ≠ iv or bu ≠ bv


• w.l.o.g., assume v is the parent of u


• if iu ≠ iv then we are done
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Cole-Vishkin color reduction scheme
• Consider node u and its parent v with colors cu and cv


‣ xu: binary representation of cu 


‣ xv: binary representation of cv      

• Define: 


‣ iu ≔ {index of the first bit where xu and xv differ}

‣ bu ∈ {0, 1} is the bit of xu in position iu


Theorem: For any two neighbors, if cu ≠ cv then it holds c’u ≠ c’v


Proof: 

• we have that c’u = 2 · iu + bu and  c’v = 2 · iv + bv


• we have that c’u ≠ c’v  if and only if iu ≠ iv or bu ≠ bv


• w.l.o.g., assume v is the parent of u


• if iu ≠ iv then we are done


• if iu = iv = i it means that, in that position, the bits differ, hence bu ≠ bv



Cole-Vishkin color reduction scheme
1. How much do we reduce the colors in one step?


2. How much can we reduce the colors if we iteratively apply the color reduction scheme?


3. What is the runtime of this procedure?



Cole-Vishkin color reduction scheme
How much do we reduce the colors in one step?


• Each node u has an initial color cu 


• cu  can be written as a ⎡log2 C⎤-bit number




Cole-Vishkin color reduction scheme
How much do we reduce the colors in one step?


• Each node u has an initial color cu 


• cu  can be written as a ⎡log2 C⎤-bit number


• Therefore:


• And thus:


iu ∈⎨0, 1, … , ⎡log2 C⎤ - 1⎬

c’u = 2 · iu + bu ≤ 2 · iu + 1 ≤ 2⎡log2 C⎤ - 1



iu ∈⎨0, 1, … , ⎡log2 C⎤ - 1⎬

c’u = 2 · iu + bu ≤ 2 · iu + 1 ≤ 2⎡log2 C⎤ - 1

Cole-Vishkin color reduction scheme
How much do we reduce the colors in one step?


• Each node u has an initial color cu 


• cu  can be written as a ⎡log2 C⎤-bit number


• Therefore:


• And thus:


Theorem: In one color reduction step, the number of colors is reduced from C to 2⎡log2 C⎤




How much can we reduce the colors if we iteratively apply the color reduction scheme?


• In one color reduction step, the number of colors is reduced from C to 2⎡log2 C⎤


Proof: C > 2⎡log2 C⎤ for all C > 6 


Cole-Vishkin color reduction scheme

Theorem: Applying the color reduction step iteratively, the algorithm eventually computes 
a coloring with the six colors ⎨0, 1, … , 5⎬




How much can we reduce the colors if we iteratively apply the color reduction scheme?


• In one color reduction step, the number of colors is reduced from C to 2⎡log2 C⎤


Proof: C > 2⎡log2 C⎤ for all C > 6 


What is the runtime of this procedure?

Cole-Vishkin color reduction scheme

Theorem: Applying the color reduction step iteratively, the algorithm eventually computes 
a coloring with the six colors ⎨0, 1, … , 5⎬




The log-star function:


• For a real number n > 1 and an integer i ≥ 1, we define


• For an integer n ≥ 2, the function log* n is defined as


• log* n: number of times one has to apply the function log2 n in order to obtain a 
number that is ≤ 1


• Examples:

log⇤ n := min{i : logi2 n  1}
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log⇤ 2 = 1, log⇤ 4 = 2, log⇤ 16 = 3, log⇤ 216 = 4, log⇤ 22
16

= 5
<latexit sha1_base64="I4qSDQYSUQNwbn40TEjMOEpxFc0="></latexit>

Rooted tree coloring: time complexity



The log-star function:


• For a real number n > 1 and an integer i ≥ 1, we define


• For an integer n ≥ 2, the function log* n is defined as 


Theorem: When starting with colors in {0, … , n - 1} the Cole-Vishkin color reduction algorithm 
computes a 6-coloring of a rooted tree in O(log* n) rounds


log⇤ n := min{i : logi2 n  1}
<latexit sha1_base64="Po5aZ7cIUPL/i1wkFcVmfXQ607c=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VQFyWpglJQCm5cVrAPaNIwmU7aoZNJmJkIJeQb3Pgrblwo4taVO//GSduFth64cDjnXu69x48Zlcqyvo3C0vLK6lpxvbSxubW9Y+7utWSUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttj25yv/1AhKQRv1fjmLghGnAaUIyUljzzxGHRoHcKOaxdQSekHDopreWiV+2lNNOGwwi0ncwzy1bFmgAuEntGymCGhmd+Of0IJyHhCjMkZde2YuWmSCiKGclKTiJJjPAIDUhXU45CIt108lIGj7TSh0EkdHEFJ+rviRSFUo5DX3eGSA3lvJeL/3ndRAWXbkp5nCjC8XRRkDCoIpjnA/tUEKzYWBOEBdW3QjxEAmGlUyzpEOz5lxdJq1qxzyrVu/Ny/XoWRxEcgENwDGxwAergFjRAE2DwCJ7BK3gznowX4934mLYWjNnMPvgD4/MHHTqb3Q==</latexit>

log(i)2 n := log2(log
(i�1)
2 n)

<latexit sha1_base64="7jVf61I1opBNi7XZXGbLV/YkE+g=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VoBUtSBUVQCm5cVrAPaGOYTCft0MkkzEyEEvoPbvwVNy4UcevGnX/jpA2orQcuHM65l3vv8SJGpbKsLyO3sLi0vJJfLaytb2xumds7TRnGApMGDlko2h6ShFFOGooqRtqRICjwGGl5w6vUb90TIWnIb9UoIk6A+pz6FCOlJdc87LKw71bvkhItjyGH5xdwqpR+jCM7tcquWbQq1gRwntgZKYIMddf87PZCHAeEK8yQlB3bipSTIKEoZmRc6MaSRAgPUZ90NOUoINJJJj+N4YFWetAPhS6u4ET9PZGgQMpR4OnOAKmBnPVS8T+vEyv/zEkoj2JFOJ4u8mMGVQjTgGCPCoIVG2mCsKD6VogHSCCsdIwFHYI9+/I8aVYr9nGlenNSrF1mceTBHtgHJWCDU1AD16AOGgCDB/AEXsCr8Wg8G2/G+7Q1Z2Qzu+APjI9vr4Obfg==</latexit>

log(1)2 n := log2 n
<latexit sha1_base64="3+pq17C7u6ZFKCbEaI/mj4Z09g4=">AAACA3icbVDLSgNBEOz1GeMr6k0vg0GIl7AbBUVQAl48RjAPSNYwO5lNhszOLDOzQlgCXvwVLx4U8epPePNvnDwOmljQUFR1090VxJxp47rfzsLi0vLKamYtu76xubWd29mtaZkoQqtEcqkaAdaUM0GrhhlOG7GiOAo4rQf965Fff6BKMynuzCCmfoS7goWMYGOldm6/xWW3XbpPC97xEAl0cYkmCrJm3i26Y6B54k1JHqaotHNfrY4kSUSFIRxr3fTc2PgpVoYRTofZVqJpjEkfd2nTUoEjqv10/MMQHVmlg0KpbAmDxurviRRHWg+iwHZG2PT0rDcS//OaiQnP/ZSJODFUkMmiMOHISDQKBHWYosTwgSWYKGZvRaSHFSbGxpa1IXizL8+TWqnonRRLt6f58tU0jgwcwCEUwIMzKMMNVKAKBB7hGV7hzXlyXpx352PSuuBMZ/bgD5zPH9zplbg=</latexit>

Rooted tree coloring: time complexity



The log-star function:


• For a real number n > 1 and an integer i ≥ 1, we define


• For an integer n ≥ 2, the function log* n is defined as 


Theorem: When starting with colors in {0, … , n - 1} the Cole-Vishkin color reduction algorithm 
computes a 6-coloring of a rooted tree in O(log* n) rounds


Proof sketch: Colors are reduced as follows

log⇤ n := min{i : logi2 n  1}
<latexit sha1_base64="Po5aZ7cIUPL/i1wkFcVmfXQ607c=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VQFyWpglJQCm5cVrAPaNIwmU7aoZNJmJkIJeQb3Pgrblwo4taVO//GSduFth64cDjnXu69x48Zlcqyvo3C0vLK6lpxvbSxubW9Y+7utWSUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttj25yv/1AhKQRv1fjmLghGnAaUIyUljzzxGHRoHcKOaxdQSekHDopreWiV+2lNNOGwwi0ncwzy1bFmgAuEntGymCGhmd+Of0IJyHhCjMkZde2YuWmSCiKGclKTiJJjPAIDUhXU45CIt108lIGj7TSh0EkdHEFJ+rviRSFUo5DX3eGSA3lvJeL/3ndRAWXbkp5nCjC8XRRkDCoIpjnA/tUEKzYWBOEBdW3QjxEAmGlUyzpEOz5lxdJq1qxzyrVu/Ny/XoWRxEcgENwDGxwAergFjRAE2DwCJ7BK3gznowX4934mLYWjNnMPvgD4/MHHTqb3Q==</latexit>

log(i)2 n := log2(log
(i�1)
2 n)

<latexit sha1_base64="7jVf61I1opBNi7XZXGbLV/YkE+g=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VoBUtSBUVQCm5cVrAPaGOYTCft0MkkzEyEEvoPbvwVNy4UcevGnX/jpA2orQcuHM65l3vv8SJGpbKsLyO3sLi0vJJfLaytb2xumds7TRnGApMGDlko2h6ShFFOGooqRtqRICjwGGl5w6vUb90TIWnIb9UoIk6A+pz6FCOlJdc87LKw71bvkhItjyGH5xdwqpR+jCM7tcquWbQq1gRwntgZKYIMddf87PZCHAeEK8yQlB3bipSTIKEoZmRc6MaSRAgPUZ90NOUoINJJJj+N4YFWetAPhS6u4ET9PZGgQMpR4OnOAKmBnPVS8T+vEyv/zEkoj2JFOJ4u8mMGVQjTgGCPCoIVG2mCsKD6VogHSCCsdIwFHYI9+/I8aVYr9nGlenNSrF1mceTBHtgHJWCDU1AD16AOGgCDB/AEXsCr8Wg8G2/G+7Q1Z2Qzu+APjI9vr4Obfg==</latexit>

log(1)2 n := log2 n
<latexit sha1_base64="3+pq17C7u6ZFKCbEaI/mj4Z09g4=">AAACA3icbVDLSgNBEOz1GeMr6k0vg0GIl7AbBUVQAl48RjAPSNYwO5lNhszOLDOzQlgCXvwVLx4U8epPePNvnDwOmljQUFR1090VxJxp47rfzsLi0vLKamYtu76xubWd29mtaZkoQqtEcqkaAdaUM0GrhhlOG7GiOAo4rQf965Fff6BKMynuzCCmfoS7goWMYGOldm6/xWW3XbpPC97xEAl0cYkmCrJm3i26Y6B54k1JHqaotHNfrY4kSUSFIRxr3fTc2PgpVoYRTofZVqJpjEkfd2nTUoEjqv10/MMQHVmlg0KpbAmDxurviRRHWg+iwHZG2PT0rDcS//OaiQnP/ZSJODFUkMmiMOHISDQKBHWYosTwgSWYKGZvRaSHFSbGxpa1IXizL8+TWqnonRRLt6f58tU0jgwcwCEUwIMzKMMNVKAKBB7hGV7hzXlyXpx352PSuuBMZ/bgD5zPH9zplbg=</latexit>

Rooted tree coloring: time complexity

n ! 2dlog2 ne
<latexit sha1_base64="E2fRi70lfMe6F7vDK2h35tfH7qw=">AAACDnicbVBNS8MwGE79nPOr6tFLcAw8jbYKehyI4HGC+4C1lDRLu7A0KUmqjLJf4MW/4sWDIl49e/PfmG096OYDIU+e53158z5RxqjSjvNtrayurW9sVraq2zu7e/v2wWFHiVxi0saCCdmLkCKMctLWVDPSyyRBacRINxpdTf3uPZGKCn6nxxkJUpRwGlOMtJFCu86hL2ky1EhK8QA96DNMKDOXSEIPcl9On6FdcxrODHCZuCWpgRKt0P7yBwLnKeEaM6RU33UyHRRIaooZmVT9XJEM4RFKSN9QjlKigmK2zgTWjTKAsZDmcA1n6u+OAqVKjdPIVKZID9WiNxX/8/q5ji+DgvIs14Tj+aA4Z1ALOM0GDqgkWLOxIQhLav4K8RBJhLVJsGpCcBdXXiYdr+GeNbzb81rzuoyjAo7BCTgFLrgATXADWqANMHgEz+AVvFlP1ov1bn3MS1essucI/IH1+QMDy5t2</latexit>



The log-star function:


• For a real number n > 1 and an integer i ≥ 1, we define


• For an integer n ≥ 2, the function log* n is defined as 


Theorem: When starting with colors in {0, … , n - 1} the Cole-Vishkin color reduction algorithm 
computes a 6-coloring of a rooted tree in O(log* n) rounds


Proof sketch: Colors are reduced as follows

log⇤ n := min{i : logi2 n  1}
<latexit sha1_base64="Po5aZ7cIUPL/i1wkFcVmfXQ607c=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VQFyWpglJQCm5cVrAPaNIwmU7aoZNJmJkIJeQb3Pgrblwo4taVO//GSduFth64cDjnXu69x48Zlcqyvo3C0vLK6lpxvbSxubW9Y+7utWSUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttj25yv/1AhKQRv1fjmLghGnAaUIyUljzzxGHRoHcKOaxdQSekHDopreWiV+2lNNOGwwi0ncwzy1bFmgAuEntGymCGhmd+Of0IJyHhCjMkZde2YuWmSCiKGclKTiJJjPAIDUhXU45CIt108lIGj7TSh0EkdHEFJ+rviRSFUo5DX3eGSA3lvJeL/3ndRAWXbkp5nCjC8XRRkDCoIpjnA/tUEKzYWBOEBdW3QjxEAmGlUyzpEOz5lxdJq1qxzyrVu/Ny/XoWRxEcgENwDGxwAergFjRAE2DwCJ7BK3gznowX4934mLYWjNnMPvgD4/MHHTqb3Q==</latexit>

log(i)2 n := log2(log
(i�1)
2 n)

<latexit sha1_base64="7jVf61I1opBNi7XZXGbLV/YkE+g=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VoBUtSBUVQCm5cVrAPaGOYTCft0MkkzEyEEvoPbvwVNy4UcevGnX/jpA2orQcuHM65l3vv8SJGpbKsLyO3sLi0vJJfLaytb2xumds7TRnGApMGDlko2h6ShFFOGooqRtqRICjwGGl5w6vUb90TIWnIb9UoIk6A+pz6FCOlJdc87LKw71bvkhItjyGH5xdwqpR+jCM7tcquWbQq1gRwntgZKYIMddf87PZCHAeEK8yQlB3bipSTIKEoZmRc6MaSRAgPUZ90NOUoINJJJj+N4YFWetAPhS6u4ET9PZGgQMpR4OnOAKmBnPVS8T+vEyv/zEkoj2JFOJ4u8mMGVQjTgGCPCoIVG2mCsKD6VogHSCCsdIwFHYI9+/I8aVYr9nGlenNSrF1mceTBHtgHJWCDU1AD16AOGgCDB/AEXsCr8Wg8G2/G+7Q1Z2Qzu+APjI9vr4Obfg==</latexit>

log(1)2 n := log2 n
<latexit sha1_base64="3+pq17C7u6ZFKCbEaI/mj4Z09g4=">AAACA3icbVDLSgNBEOz1GeMr6k0vg0GIl7AbBUVQAl48RjAPSNYwO5lNhszOLDOzQlgCXvwVLx4U8epPePNvnDwOmljQUFR1090VxJxp47rfzsLi0vLKamYtu76xubWd29mtaZkoQqtEcqkaAdaUM0GrhhlOG7GiOAo4rQf965Fff6BKMynuzCCmfoS7goWMYGOldm6/xWW3XbpPC97xEAl0cYkmCrJm3i26Y6B54k1JHqaotHNfrY4kSUSFIRxr3fTc2PgpVoYRTofZVqJpjEkfd2nTUoEjqv10/MMQHVmlg0KpbAmDxurviRRHWg+iwHZG2PT0rDcS//OaiQnP/ZSJODFUkMmiMOHISDQKBHWYosTwgSWYKGZvRaSHFSbGxpa1IXizL8+TWqnonRRLt6f58tU0jgwcwCEUwIMzKMMNVKAKBB7hGV7hzXlyXpx352PSuuBMZ/bgD5zPH9zplbg=</latexit>

Rooted tree coloring: time complexity

n ! O(log n)
<latexit sha1_base64="iD6OOZ1AK5HMElpG/7QB0q+Ed0Q=">AAACAHicbVDLSgNBEOz1GeMr6sGDl8EgxEvYjYIeAyJ4M4J5QHYJs5PZzZDZmWVmVgkhF3/FiwdFvPoZ3vwbJ4+DJhY0FFXddHeFKWfauO63s7S8srq2ntvIb25t7+wW9vYbWmaK0DqRXKpWiDXlTNC6YYbTVqooTkJOm2H/auw3H6jSTIp7M0hpkOBYsIgRbKzUKRwK5CsW9wxWSj6i25LPZYzEaadQdMvuBGiReDNShBlqncKX35UkS6gwhGOt256bmmCIlWGE01HezzRNMenjmLYtFTihOhhOHhihE6t0USSVLWHQRP09McSJ1oMktJ0JNj09743F/7x2ZqLLYMhEmhkqyHRRlHFkJBqngbpMUWL4wBJMFLO3ItLDChNjM8vbELz5lxdJo1L2zsqVu/Ni9XoWRw6O4BhK4MEFVOEGalAHAiN4hld4c56cF+fd+Zi2LjmzmQP4A+fzB4Y6lbc=</latexit>



The log-star function:


• For a real number n > 1 and an integer i ≥ 1, we define


• For an integer n ≥ 2, the function log* n is defined as 


Theorem: When starting with colors in {0, … , n - 1} the Cole-Vishkin color reduction algorithm 
computes a 6-coloring of a rooted tree in O(log* n) rounds


Proof sketch: Colors are reduced as follows

log⇤ n := min{i : logi2 n  1}
<latexit sha1_base64="Po5aZ7cIUPL/i1wkFcVmfXQ607c=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VQFyWpglJQCm5cVrAPaNIwmU7aoZNJmJkIJeQb3Pgrblwo4taVO//GSduFth64cDjnXu69x48Zlcqyvo3C0vLK6lpxvbSxubW9Y+7utWSUCEyaOGKR6PhIEkY5aSqqGOnEgqDQZ6Ttj25yv/1AhKQRv1fjmLghGnAaUIyUljzzxGHRoHcKOaxdQSekHDopreWiV+2lNNOGwwi0ncwzy1bFmgAuEntGymCGhmd+Of0IJyHhCjMkZde2YuWmSCiKGclKTiJJjPAIDUhXU45CIt108lIGj7TSh0EkdHEFJ+rviRSFUo5DX3eGSA3lvJeL/3ndRAWXbkp5nCjC8XRRkDCoIpjnA/tUEKzYWBOEBdW3QjxEAmGlUyzpEOz5lxdJq1qxzyrVu/Ny/XoWRxEcgENwDGxwAergFjRAE2DwCJ7BK3gznowX4934mLYWjNnMPvgD4/MHHTqb3Q==</latexit>

log(i)2 n := log2(log
(i�1)
2 n)

<latexit sha1_base64="7jVf61I1opBNi7XZXGbLV/YkE+g=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0VoBUtSBUVQCm5cVrAPaGOYTCft0MkkzEyEEvoPbvwVNy4UcevGnX/jpA2orQcuHM65l3vv8SJGpbKsLyO3sLi0vJJfLaytb2xumds7TRnGApMGDlko2h6ShFFOGooqRtqRICjwGGl5w6vUb90TIWnIb9UoIk6A+pz6FCOlJdc87LKw71bvkhItjyGH5xdwqpR+jCM7tcquWbQq1gRwntgZKYIMddf87PZCHAeEK8yQlB3bipSTIKEoZmRc6MaSRAgPUZ90NOUoINJJJj+N4YFWetAPhS6u4ET9PZGgQMpR4OnOAKmBnPVS8T+vEyv/zEkoj2JFOJ4u8mMGVQjTgGCPCoIVG2mCsKD6VogHSCCsdIwFHYI9+/I8aVYr9nGlenNSrF1mceTBHtgHJWCDU1AD16AOGgCDB/AEXsCr8Wg8G2/G+7Q1Z2Qzu+APjI9vr4Obfg==</latexit>

log(1)2 n := log2 n
<latexit sha1_base64="3+pq17C7u6ZFKCbEaI/mj4Z09g4=">AAACA3icbVDLSgNBEOz1GeMr6k0vg0GIl7AbBUVQAl48RjAPSNYwO5lNhszOLDOzQlgCXvwVLx4U8epPePNvnDwOmljQUFR1090VxJxp47rfzsLi0vLKamYtu76xubWd29mtaZkoQqtEcqkaAdaUM0GrhhlOG7GiOAo4rQf965Fff6BKMynuzCCmfoS7goWMYGOldm6/xWW3XbpPC97xEAl0cYkmCrJm3i26Y6B54k1JHqaotHNfrY4kSUSFIRxr3fTc2PgpVoYRTofZVqJpjEkfd2nTUoEjqv10/MMQHVmlg0KpbAmDxurviRRHWg+iwHZG2PT0rDcS//OaiQnP/ZSJODFUkMmiMOHISDQKBHWYosTwgSWYKGZvRaSHFSbGxpa1IXizL8+TWqnonRRLt6f58tU0jgwcwCEUwIMzKMMNVKAKBB7hGV7hzXlyXpx352PSuuBMZ/bgD5zPH9zplbg=</latexit>

Rooted tree coloring: time complexity

n ! O(log n) ! O(log log n) ! O(log log log n) ! . . .
<latexit sha1_base64="77H+2KRtkN50s3xaBw32tGLU+MQ=">AAACTnichVHLSgMxFM3UV62vqks3wSLUTZmpgi4LIrizgn1AZyiZTNqGZpIhuaOU0i90I+78DDcuFNH0sdC24IELh3Pu5SbnhongBlz31cmsrK6tb2Q3c1vbO7t7+f2DulGppqxGlVC6GRLDBJesBhwEayaakTgUrBH2r8Z+44Fpw5W8h0HCgph0Je9wSsBK7TyT2Ne82wOitXrEt0VfqC6Wp8vU/6xlvi8iBaadL7gldwK8SLwZKaAZqu38ix8pmsZMAhXEmJbnJhAMiQZOBRvl/NSwhNA+6bKWpZLEzATDSRwjfGKVCHeUtiUBT9TfE0MSGzOIQ9sZE+iZeW8sLvNaKXQugyGXSQpM0umiTiowKDzOFkdcMwpiYAmhmtu3YtojmlCwF8jZELz5Ly+SernknZXKd+eFyvUsjiw6QseoiDx0gSroBlVRDVH0hN7QB/p0np1358v5nrZmnNnMIfqDTPYHCiezxw==</latexit>



Coloring rooted trees:


• We have seen that computing a 2-coloring requires Ω(D)


• We have seen how to compute a 6-coloring in O(log* n) rounds


• What about 3, 4, and 5 colors? 


From six to three colors



Coloring rooted trees:


• We have seen that computing a 2-coloring requires Ω(D)


• We have seen how to compute a 6-coloring in O(log* n) rounds


• What about 3, 4, and 5 colors? 


Reducing from 6 to 5 colors:


• Can we recolour nodes with color 5 with a smaller color?


‣ If Δ ≤ 4, for every node with color 5 there is a free color in {0, … , 4} available:      
recolor them in parallel in one round


‣ What can we do if Δ > 4?

From six to three colors
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• Consider a rooted tree colored with 6 colors from {0, … , 5}


• Can we get rid of color 5?


• Solution: shift down colors

From six to five colors



1 2 1 5 3
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2 2 5 1 4
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1
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5
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• Consider a rooted tree colored with 6 colors from {0, … , 5}


• Can we get rid of color 5?


• Solution: shift down colors

From six to five colors



1 2 1 5 3

4

4

2

1

2 2 5 1 4

41 4 3 3 3

1 0 20

4

0

5

1

53

0

4

5

2 0 2

0

• Consider a rooted tree colored with 6 colors from {0, … , 5}


• Can we get rid of color 5?


• Solution: shift down colors

From six to five colors

4 4 4 4 4
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4
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5 5 5



4 4 4 4 4
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• Consider a rooted tree colored with 6 colors from {0, … , 5}


• Can we get rid of color 5?


• Solution: shift down colors

From six to five colors
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• Consider a rooted tree colored with 6 colors from {0, … , 5}


• Can we get rid of color 5?


• Solution: shift down colors

From six to five colors

4 4 4 4 4

1
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3 3 3 3 3

20 0 0 2 2

4 2 00
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1 1 1
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• Consider a rooted tree colored with 6 colors from {0, … , 5}


• Can we get rid of color 5?


• Solution: shift down colors

From six to five colors

4 4 4 4 4

1

2

1

4

3 3 3 3 3

20 0 0 2 2

4 2 00

0

0

0

2

11

1

0

0

1 1 1 !



Color reduction phase for rooted trees


1. Shift-down step


2. Color reduction step


Theorem: As long as the number of colors C is larger than three, we can reduce the number of 
colors by one in two rounds

From six to three colors



Cole-Vishkin (to get 6-coloring) + color reduction = 3-coloring


Theorem: When starting with colors in {0, … , n - 1}, there is a distributed algorithm to 
computes a 3-coloring of a rooted tree in O(log* n) rounds


• Unique IDs in {0, … , n - 1} can be used as an initial coloring


Rooted trees: coloring and MIS



Rooted trees: coloring and MIS
Cole-Vishkin (to get 6-coloring) + color reduction = 3-coloring


Theorem: When starting with colors in {0, … , n - 1}, there is a distributed algorithm to 
computes a 3-coloring of a rooted tree in O(log* n) rounds


• Unique IDs in {0, … , n - 1} can be used as an initial coloring


Theorem: When starting with colors in {0, … , n - 1}, there is a distributed algorithm to 
computes an MIS of a rooted tree in O(log* n) rounds


• One first computes a 6-coloring (or a 3-coloring) 


• Then an MIS can be computed in O(1) rounds


‣ We have seen before that from a C-coloring we get MIS in C rounds



Pseudoforest


• A graph in which each connected component has at most one cycle


Directed pseudoforest


• A graph where the out-degree of every node is at most 1

Coloring directed pseudoforests



Directed pseudoforest

• A graph where the out-degree of every node is at most 1


Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed 
pseudoforest

Coloring directed pseudoforests



Directed pseudoforest

• A graph where the out-degree of every node is at most 1


Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed 
pseudoforest


• The Cole-Vishkin algorithm works as before


‣ Nodes with out-degree 1 treat their out-neighbors as parent


‣ Other nodes behave like the root and imagine an out-neighbor with some color

Coloring directed pseudoforests



Directed pseudoforest

• A graph where the out-degree of every node is at most 1


Claim: The 3-coloring algorithm for rooted trees can also be applied in a directed 
pseudoforest


• The Cole-Vishkin algorithm works as before


‣ Nodes with out-degree 1 treat their out-neighbors as parent


‣ Other nodes behave like the root and imagine an out-neighbor with some color


• The color reduction algorithm also works in the same way


‣ Shift-down: Every node with out-degree 1 picks the color of their out-neighbor, every other node just 
picks a new color (either 0 or 1)


‣ All in-neighbors of a node then have the same color and each node therefore only sees 2 different 
colors among its neighbors

Coloring directed pseudoforests
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• We first orient each edge on the graph arbitrarily


‣ E.g., orient edge {u, v} from u to v iff ID(u) < ID(v)


• Assume that a node v has dv out-degree edges. Node v labels these edges from 1 to dv 
(note that dv  ≤ Δ)

Coloring graphs with maximum degree Δ
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• Assume that a node v has dv out-degree edges. Node v labels these edges from 1 to dv 
(note that dv  ≤ Δ)
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(note that dv  ≤ Δ)
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• Assume that a node v has dv out-degree edges. Node v labels these edges from 1 to dv 
(note that dv  ≤ Δ)
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Coloring graphs with maximum degree Δ
• We first orient each edge on the graph arbitrarily


‣ E.g., orient edge {u, v} from u to v iff ID(u) < ID(v)


• Assume that a node v has dv out-degree edges. Node v labels these edges from 1 to dv 
(note that dv  ≤ Δ)



Coloring graphs with maximum degree Δ
• Every node has at most one outgoing edge for each label 


• For all i ∈ {1, … , Δ}, compute a 3-coloring of Gi in O(log* n) rounds
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Coloring graphs with maximum degree Δ
• Every node has at most one outgoing edge for each label 


• For all i ∈ {1, … , Δ}, compute a 3-coloring of Gi in O(log* n) rounds



• Every node v ∈ V then gets a vector cv ∈ {0, 1, 2}Δ of colors, where cv,i is the color of v in 
graph Gi


• For every two neighbors u and v, we have cu ≠ cv

‣ If the edge {u, v} has label i, we have cu,i ≠ cv,i 

Coloring graphs with maximum degree Δ



Coloring graphs with maximum degree Δ
Theorem: For a graph with maximum degree Δ, there is a distributed algorithm to 
compute a 3Δ-coloring in O(log* n) rounds




Theorem: For a graph with maximum degree Δ, there is a distributed algorithm to 
compute a 3Δ-coloring in O(log* n) rounds


• As we saw, the n in O(log* n) represent the size of initial input coloring


• Usually, we assume that the IDs represent the initial input coloring, but how large can the ID 
space be?


‣ Usual assumption: IDs are from 1 to nc, where n is the number of nodes and c is a constant


‣ The algorithm would have the same runtime even if IDs were to be from 0 to  , where 
the power tower is of size at most O(log* n)
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Coloring graphs with maximum degree Δ



Theorem: For a graph with maximum degree Δ, there is a distributed algorithm to 
compute a 3Δ-coloring in O(log* n) rounds


• If Δ = O(1), then 3Δ  = O(1): we get a C = 3Δ coloring in O(log* n) rounds (where C is a constant)


• We saw that if a C-coloring is given, we can compute a (Δ + 1)-coloring and an MIS in C rounds

Theorem: For a graph with maximum degree Δ = O(1), there are distributed algorithms to 
compute a (Δ + 1)-coloring and an MIS in O(log* n) rounds

Coloring bounded-degree graphs



How can we color a tree that is not rooted?

Coloring unrooted trees



How can we color a tree that is not rooted?


• Electing a root and orienting towards the root costs ϴ(D) rounds!


• Rooted tree → out-degree of each node is at most 1

Coloring unrooted trees



How can we color a tree that is not rooted?


• Electing a root and orienting towards the root costs ϴ(D) rounds!


• Rooted tree → out-degree of each node is at most 1


• Graphs of max degree Δ → out-degree of each node is at most Δ (3Δ-coloring)

Coloring unrooted trees



How can we color a tree that is not rooted?


• Electing a root and orienting towards the root costs ϴ(D) rounds!


• Rooted tree → out-degree of each node is at most 1


• Graphs of max degree Δ → out-degree of each node is at most Δ (3Δ-coloring)


• Goal → out-degree of each node is at most c (for a constant c)


‣ We can use the algorithm from before to obtain C = 3c-coloring

Coloring unrooted trees



How can we color a tree that is not rooted?


• Electing a root and orienting towards the root costs ϴ(D) rounds!


• Rooted tree → out-degree of each node is at most 1


• Graphs of max degree Δ → out-degree of each node is at most Δ (3Δ-coloring)


• Goal → out-degree of each node is at most c (for a constant c)


‣ We can use the algorithm from before to obtain C = 3c-coloring


• How can we compute such an orientation for a small c?


‣ Let’s try c = 2 (this would give a 9-coloring)

Coloring unrooted trees



Computing an orientation with out-degree 2
Observation 1: Computing an orientation with out-degree ≤ 2 is trivial for of degree ≤ 2 
(orient arbitrarily)
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Computing an orientation with out-degree 2
Observation 1: Computing an orientation  with out-degree ≤ 2 is trivial for of degree ≤ 2 
(orient arbitrarily)


Observation 2: In an n-node tree, at least n/3 nodes have degree ≤ 2


• Assume that k nodes have degree ≥ 3
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Level 1

Level 0

How to orient edges?

Nodes in Level i have 
degree ≤ 2 in the graph 
induced by nodes in 
Level j ≥ i
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orient arbitrarily
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Level 2

Level 1

Level 0

How to orient edges?

How many levels?

Edges between levels: 

orient from smallest to 
largest

Edges inside each level: 

orient arbitrarily

Nr. of nodes in Level ≥ i: 

at most  n · (2/3)i

Each time we process a constant fraction 
of the nodes: O(log n) levels

Computing an orientation with out-degree 2



9-coloring unrooted trees
1. Compute an orientation with out-degree ≤ 2 in O(log n) rounds


‣ This creates two directed forests (it’s not a pseudoforest since in a tree there are no cycles)


2. Color each forest with 3 colors in O(log* n) rounds


‣ Every node v then has two colors: cv,1 for forest 1 and cv,2 for forest 2


‣ The total number of colors used is 3out-degree ≤ 32 = 9


‣ For every edge {u, v}, we have cu,1 ≠ cv,1 or cu,2 ≠ cv,2


Remark: The algorithm also works for (undirected) pseudoforests



Summary
Coloring trees


• Trees can be colored with 2 colors, this however requires time Ω(D)


• Rooted trees can be 3-colored in time O(log* n)


• Unrooted trees can be 9-colored in time O(log n) (it is possible to obtain 3 colors!)


Coloring general graphs with maximum degree Δ


• 3Δ-coloring can be done in time O(log* n)


• (Δ + 1)-coloring can be done in time O(3Δ + log* n)


‣ If Δ = O(1), this is O(log* n)


‣ This algorithm can be improved significantly: the current best runtime is roughly O(√Δ + log* n)


Outlook


• Next lecture: randomized algorithms for (Δ + 1)-coloring and MIS in general graphs


• Later lecture: we will see that, for deterministic algorithms, some bounds from today’s lecture are tight


